Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene sets the stage for the next generation of THz astronomy detectors

11.09.2019

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for astronomy. Chalmers researchers have shown that engineered graphene adds a new material paradigm for THz heterodyne detection.


​The image depicts a schematic of terahertz (THz) heterodyne detection with graphene. In this, two THz waves (red) are coupled into graphene, where they are combined or mixed. One of the waves is a high intensity signal generated by a local THz light source (i.e. a local oscillator), at a known THz frequency. The other signal is a faint THz wave that mimics the waves coming from space. Illustration: Hans He​​​


"Graphene might be the only known material that remains an excellent conductor of electricity/heat even when having, effectively, no electrons. We have reached a near zero-electron scenario in graphene, also called Dirac point, by assembling electron-accepting molecules on its surface. Our results show that graphene is an exceptionally good material for THz heterodyne detection when doped to the Dirac point", says Samuel Lara-Avila, assistant professor at the Quantum Device Physics Laboratory and lead author of the paper.

Credit: Photographer / Source J O Yxell / Chalmers

"Graphene might be the only known material that remains an excellent conductor of electricity/heat even when having, effectively, no electrons. We have reached a near zero-electron scenario in graphene, also called Dirac point, by assembling electron-accepting molecules on its surface.

Our results show that graphene is an exceptionally good material for THz heterodyne detection when doped to the Dirac point", says Samuel Lara-Avila, assistant professor at the Quantum Device Physics Laboratory and lead author of the paper.

... more about:
»3D »GHz »QUANTUM »Superconductors »THz »graphene »oscillator

In detail, the experimental demonstration involves heterodyne detection, in which two signals are combined, or mixed, using graphene. One signal is a high intensity wave at a known THz frequency, generated by a local source (i.e. a local oscillator). The second is a faint THz signal that mimics the waves coming from space. Graphene mixes these signals and then produces an output wave at a much lower gigahertz (GHz) frequency, called the intermediate frequency, that can be analyzed with standard low noise gigahertz electronics. The higher the intermediate frequency can be, the higher bandwidth the detector is said to have, required to accurately identify motions inside the celestial objects.

Sergey Cherednichenko, professor at the Terahertz and Millimetre Wave Laboratory and co-author of the paper, says:

"According to our theoretical model, this graphene THz detector has a potential to reach quantum-limited operation for the important 1-5 THz spectral range. Moreover, the bandwidth can exceed 20 GHz, larger than 5 GHz that the state of the artstate-of-the-art technology has to offer."

Another crucial aspect for the graphene THz detector is the extremely low power needed for the local oscillator to achieve a trustable detection of faint THz signals, few orders of magnitude lower than superconductors require. This could enable quantum-limited THz coherent detector arrays, hence opening the door to 3D imaging of the universe.

Elvire De Beck, astronomer at the Department of Space, Earth and Environment, who did not take part in the research, explains the possible implications for practical astronomy:

"This graphene-based technology has enormous potential for future space missions that aim at e.g. unveiling how water, carbon, oxygen and life itself came to earth. A lightweight, power effective 3D imager that is quantum-limited at terahertz frequencies is crucial for such ambitious tasks. But, at the moment, THz 3D imagers are simply not available".

Sergey Kubatkin, professor at the Quantum Device Physics Laboratory and co-author of the paper, explains:

"The core of the THz detector is the system of graphene and molecular assemblies. This is in itself a novel composite 2D material that deserves deeper investigation from a fundamental point of view, as it displays a whole new regime of charge/heat transport governed by quantum-mechanical effects."

###

Read the full paper, "Towards quantum-limited coherent detection of terahertz waves in charge-neutral graphene" in Nature Astronomy

Watch an experimental demonstration with prof Sergey Cherednichenko here (YouTube)

For more information, contact:

Samuel Lara-Avila, assistant professor at the Quantum Device Physics Laboratory,
Department of Microtechnology and Nanoscience - MC2,
Chalmers University of Technology, Sweden
samuel.lara@chalmers.se
+46 31 772 30 31

Background information:

Astronomers resort to coherent detectors, based on heterodyne technology, to study fingerprints of water, carbon, oxygen and many other species originating from the most remote locations in the universe. Coherent THz detectors should ideally have: high sensitivity, to detect faint cosmic signals; large bandwidth, to accurately identify motions inside the celestial objects; and low local oscillator power requirements, to enable efficient operation of many pixels.

Astronomical heterodyne observations for THz frequencies (0.1-10THz) have been dominated by superconducting devices. Despite all design and optimization efforts, some of the intrinsic material properties of superconductors have made it challenging to simultaneously fulfill all the stringent requirements (sensitivity, bandwidth, low local oscillator power) needed to build THz heterodyne detector arrays capable of imaging large portions of the THz universe.

Researchers involved:

Besides Samuel Lara-Avila, Sergey Cherednichenko, and Sergey Kubatkin, several Chalmers researchers have been involved in the research and are co-authors to the paper: Andrey Danilov, senior researcher, Hans He, PhD student, Kyung Ho Kim, postdoc, Floriana Lombardi, professor, and Thilo Bauch, associate professor. Collaborating co-authors are Dmitry Golubev, research fellow at Aalto University, Finland, and Rositsa Yakimova, professor emerita at Linköping University.

The research was supported by the Swedish Foundation for Strategic Research (SSF), Knut and Alice Wallenberg Foundation, Chalmers Excellence Initiative Nano, the Swedish Research Council (VR), the Korea-Sweden Research Cooperation of the NRF, and the European Union's Horizon 2020 research and innovation programme.

Media Contact

Helena Österling af Wåhlberg
helena.osterling-af-wahlberg@chalmers.se
46-733-424-091

 @chalmersuniv

http://www.chalmers.se/en/ 

Helena Österling af Wåhlberg | EurekAlert!
Further information:
https://www.chalmers.se/en/departments/mc2/news/Pages/Graphene-sets-the-stage-for-the-next-generation-of-THz-astronomy-detectors.aspx
http://dx.doi.org/10.1038/s41550-019-0843-7

Further reports about: 3D GHz QUANTUM Superconductors THz graphene oscillator

More articles from Physics and Astronomy:

nachricht New breakthrough: Photomultiplication type all-polymer photodetectors with single carrier transport
10.09.2019 | Science China Press

nachricht Fermilab achieves world-record field strength for accelerator magnet
10.09.2019 | DOE/Fermi National Accelerator Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: A molecular 'atlas' of animal development

Researchers from the University of Pennsylvania provide a molecular map of every cell in a developing animal embryo

In a paper in Science this week, Penn researchers report the first detailed molecular characterization of how every cell changes during animal embryonic...

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

How long does a whale feed? New data gives insight into blue and fin whale behavior

11.09.2019 | Life Sciences

Promising mobile technologies find methane leaks quickly, Stanford/EDF study finds

11.09.2019 | Information Technology

Satellite data record shows climate change's impact on fires

11.09.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>