Graphene's multi-colored butterflies

One of the major challenges for using graphene in electronics applications is the absence of a band gap, which basically means that graphene's electrical conductivity cannot be switched off completely. Whatever researchers tried to do with the material so far, it remained highly electrically conductive.

A new direction that has recently emerged in graphene research is to try to modify graphene's electronic properties by combining it with other similar materials in multilayered stacks. This creates an additional landscape for electrons moving through graphene and, therefore, its electronic properties can change strongly.

The University of Manchester scientists have used capacitance measurements to probe these changes. They found that in combination with a magnetic field this creates numerous replicas of the original graphene spectrum. This phenomenon is known as the Hofstadter butterfly but it is the first time that well developed replica spectra have been observed.

The researchers found a wealth of unexpected physics in this new system. For example, the Hofstadter butterflies turned out to be strongly contorted, very different from the theoretical predictions. This happens because electrons feel not only the landscape but also each other, which modifies the butterfly.

Another phenomenon that the Manchester paper reports is that graphene starts behaving at very low temperatures like a tiny ferromagnet. Usually, the higher the magnetic field, the more magnetic graphene become. The Hofstadter butterfly in Manchester's capacitors leads to an unexpected oscillating behaviour of the ferromagnetism. As new replica spectra emerge and disappear, so does the ferromagnetism.

Dr Mishchenko said: “It is really a new nice electronic system both similar to and different from graphene. We expect many more surprises. Let us first understand what it is and then we start talking about possible applications.”

###

The Manchester paper is a collaboration that involved researchers from the University of Lancaster in the UK, National High-Field Laboratory in Grenoble in France, National Institute for Materials Science in Japan and a University of Belo Horizonte in Brazil.

Media Contact

Daniel Cochlin Eurek Alert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors