Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene may open the gate to future terahertz technologies

13.09.2011
Researchers from the University of Notre Dame in Indiana have harnessed another one of graphene’s remarkable properties to better control a relatively untamed portion of the electromagnetic spectrum: the terahertz band.

Terahertz radiation offers tantalizing new opportunities in communications, medical imaging, and chemical detection. Straddling the transition between the highest energy radio waves and the lowest energy infrared light, terahertz waves are notoriously difficult to produce, detect, and modulate.

Modulation, or varying the height of the terahertz waves, is particularly important because a modulated signal can carry information and is more versatile for applications such as chemical and biological sensing. Some of today’s most promising terahertz technologies are based on small semiconductor transistor-like structures that are able to modulate a terahertz signal at room temperature, which is a significant advantage over earlier modulators that could only operate at extremely cold temperatures.

Unfortunately, these transistor-like devices rely on a thin layer of metal called a “metal gate” to tune the terahertz signal. This metal gate significantly reduces the signal strength and limits how much the signal can be modulated to a lackluster 30 percent. As reported in the AIP’s journal Applied Physics Letters, by replacing the metal gate with a single layer of graphene, the researchers have predicted that the modulation range can be significantly expanded to be in excess of 90 percent. This modulation is controlled by applying a voltage between the graphene and semiconductor. Unlike the metal gate modulator, the graphene design barely diminished the output power of the terahertz energy. Made up of a one-atom-thick sheet of carbon atoms, graphene boasts a host of amazing properties: it’s remarkably strong, a superb thermal insulator, a conductor of electricity, and now a better means to modulate terahertz radiation.

Article: “Unique prospects for graphene-based terahertz modulators” is accepted for publication in Applied Physics Letters.

Authors: Berardi Sensale-Rodriguez (1), Tian Fang (1), Rusen Yan (1), Michelle M. Kelly (1), Debdeep Jena (1), Lei Liu (1), and Huili (Grace) Xing (1).

(1) Department of Electrical Engineering, University of Notre Dame

Charles E. Blue | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>