Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene applications in electronics and photonics

02.11.2011
Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the past few years have seen an explosion of research into the properties and potential applications of graphene, which has been touted as a superior alternative to silicon.

Because graphene is a two-dimensional material, "all of it is an exposed surface," says physical chemist Phaedon Avouris, manager of the Nanometer Scale Science and Technology division at IBM's T.J. Watson Research Center in Yorktown Heights, N.Y.

"While graphene has a number of extremely useful properties, including very fast electron mobility, high mechanical strength, and excellent thermal conductivity, the interactions of graphene with its environment – for example, with the substrate it is placed on, the ambient environment, or other materials in a device structure – can drastically affect and change its intrinsic properties."

"Our interest is to understand the properties of this new material under conditions that are present in actual technology and apply this knowledge to design, fabricate, and test graphene-based electronic and optoelectronic devices and circuits," says Avouris, who will present new experimental results on the use of graphene in fast electronics and photonics at the AVS meeting in Nashville, Tenn., held Oct. 30 – Nov. 4. He will also discuss what still needs to be done to translate these applications into commercial products.

Avouris, an IBM Fellow, has been involved in nanotechnology research for 25 years, and has spent the last 15 years studying the properties and applications of carbon nanotubes, a close relative of graphene. "So it was natural that when graphene was isolated in 2004, I turned my attention to it. With the help of funding from DARPA, we started a focused effort on graphene electronics," he says.

Unlike conventional semiconductors like silicon and gallium arsenide, which are currently used in electronics, graphene does not have a band-gap – the energy difference between a material's non-conductive and conductive state. "This makes it unsuitable for building digital switches, which require the ability to switch the current off completely," Avouris says. "However," he adds, "the excellent electrical properties of graphene, such as its high electron mobility coupled with modest current modulation, make it very appropriate for very fast (high-frequency) analog electronics," which are used in wireless communications, radar, security systems, imaging, and other applications.

"We already have demonstrated high-frequency graphene transistors – greater than 200 gigahertz – and simple electronic circuits such as frequency mixers," says Avouris, "and we have also demonstrated very fast photodetectors and have used them to detect optical data streams."

In the future, graphene researchers need to improve the quality of synthetic graphene and to study its properties under conditions relevant to technology, says Avouris, who is "very optimistic" about the future of graphene in both electronics and photonics and anticipates the development of additional new applications.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation NS-WeM-4, "Graphene-based Electronics and Optoelectronics," is at 9 a.m. on Wednesday, Nov. 2.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Statistical inference to mimic the operating manner of highly-experienced crystallographer
18.09.2019 | Japan Science and Technology Agency

nachricht Scientists create fully electronic 2-dimensional spin transistors
18.09.2019 | University of Groningen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stevens researchers to develop handheld device to diagnose skin cancer

18.09.2019 | Medical Engineering

Elusive compounds of greenhouse gas isolated by Warwick chemists

18.09.2019 | Life Sciences

Scientists create fully electronic 2-dimensional spin transistors

18.09.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>