Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene applications in electronics and photonics

02.11.2011
Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the past few years have seen an explosion of research into the properties and potential applications of graphene, which has been touted as a superior alternative to silicon.

Because graphene is a two-dimensional material, "all of it is an exposed surface," says physical chemist Phaedon Avouris, manager of the Nanometer Scale Science and Technology division at IBM's T.J. Watson Research Center in Yorktown Heights, N.Y.

"While graphene has a number of extremely useful properties, including very fast electron mobility, high mechanical strength, and excellent thermal conductivity, the interactions of graphene with its environment – for example, with the substrate it is placed on, the ambient environment, or other materials in a device structure – can drastically affect and change its intrinsic properties."

"Our interest is to understand the properties of this new material under conditions that are present in actual technology and apply this knowledge to design, fabricate, and test graphene-based electronic and optoelectronic devices and circuits," says Avouris, who will present new experimental results on the use of graphene in fast electronics and photonics at the AVS meeting in Nashville, Tenn., held Oct. 30 – Nov. 4. He will also discuss what still needs to be done to translate these applications into commercial products.

Avouris, an IBM Fellow, has been involved in nanotechnology research for 25 years, and has spent the last 15 years studying the properties and applications of carbon nanotubes, a close relative of graphene. "So it was natural that when graphene was isolated in 2004, I turned my attention to it. With the help of funding from DARPA, we started a focused effort on graphene electronics," he says.

Unlike conventional semiconductors like silicon and gallium arsenide, which are currently used in electronics, graphene does not have a band-gap – the energy difference between a material's non-conductive and conductive state. "This makes it unsuitable for building digital switches, which require the ability to switch the current off completely," Avouris says. "However," he adds, "the excellent electrical properties of graphene, such as its high electron mobility coupled with modest current modulation, make it very appropriate for very fast (high-frequency) analog electronics," which are used in wireless communications, radar, security systems, imaging, and other applications.

"We already have demonstrated high-frequency graphene transistors – greater than 200 gigahertz – and simple electronic circuits such as frequency mixers," says Avouris, "and we have also demonstrated very fast photodetectors and have used them to detect optical data streams."

In the future, graphene researchers need to improve the quality of synthetic graphene and to study its properties under conditions relevant to technology, says Avouris, who is "very optimistic" about the future of graphene in both electronics and photonics and anticipates the development of additional new applications.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation NS-WeM-4, "Graphene-based Electronics and Optoelectronics," is at 9 a.m. on Wednesday, Nov. 2.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>