Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Goldilocks Principle Wrong for Particle Assembly: Too Hot & Too Cold Is Just Right

21.10.2014

Microscopic particles that bind under low temperatures will melt as temperatures rise to moderate levels, but re-connect under hotter conditions, a team of New York University scientists has found. Their discovery points to new ways to create “smart materials,” cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3D printing.

“These findings show the potential to engineer the properties of materials using not only temperature, but also by employing a range of methods to manipulate the smallest of particles,” explains Lang Feng, the study’s lead author and an NYU doctoral student at the time it was conducted.


Image courtesy of Lang Feng.

Microscopic particles that bind under low temperatures (blue: bottom left) will melt as temperatures rise to moderate levels (green: center), but re-connect under hotter conditions (red: top right), a team of NYU scientists has found. Their discovery points to new ways to create “smart materials,” cutting-edge materials that adapt to their environment by taking new forms, and to sharpen the detail of 3D printing.

The research, which appears in the journal Nature Materials, reveals that the well-known Goldilocks Principle, which posits that success is found in the middle rather than at extremes, doesn’t necessarily apply to the smallest of particles.

The study focuses on polymers and colloids—particles as small as one-billionth and one-millionth of a meter in size, respectively.

These materials, and how they form, are of notable interest to scientists because they are the basis for an array of consumer products. For instance, colloidal dispersions comprise such everyday items as paint, milk, gelatin, glass, and porcelain and for advanced engineering such as steering light in photonics.

By better understanding polymer and colloidal formation, scientists have the potential to harness these particles and create new and enhanced materials—possibilities that are now largely untapped or are in relatively rudimentary form.

In the Nature Materials study, the researchers examined polymers and larger colloidal crystals at temperatures ranging from room temperature to 85 degrees C.

At room temperature, the polymers act as a gas bumping against the larger particles and applying a pressure that forces them together once the distance between the particles is too small to admit a polymer. In fact, the colloids form a crystal using this process known as the depletion interaction—an attractive entropic force, which is a dynamic that results from maximizing the random motion of the polymers and the range of space they have the freedom to explore.

As usual, the crystals melt on heating, but, unexpectedly, on heating further they re-solidify. The new solid is a Jello-like substance, with the polymers adhering to the colloids and gluing them together. This solid is much softer, more pliable and more open than the crystal.

This result, the researchers observe, reflects enthalpic attraction—the adhesive energy generated by the higher temperatures and stimulating bonding between the particles. By contrast, at the mid-level temperatures, conditions were too warm to accommodate entropic force, yet too cool to bring about enthalpic attraction.

Lang, now a senior researcher at ExxonMobil, observes that the finding may have potential in 3D printing. Currently, this technology can create 3D structures from two-dimensional layers. However, the resulting structures are relatively rudimentary in nature. By enhancing how particles are manipulated at the microscopic level, these machines could begin creating objects that are more detailed, and realistic, than is currently possible.

This work is supported partially by the National Science Foundation’s MRSEC Program (DMR-0820341), NASA (NNX08AK04G), and the Department of Energy (DE-SC0007991).

Contact Information

James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

James Devitt | newswise
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>