Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GOCE completes early orbit phase

24.03.2009
ESA's GOCE satellite was formally declared ready for work at 01:00 CET on 20 March. During the critical Launch and Early Orbit Phase beginning with separation from its booster on 17 March, GOCE was checked out to confirm that all of its control systems are operating normally.
The end of the Launch and Early Orbit Phase (LEOP) came overnight after GOCE was switched to Fine Pointing Mode. This means that all of its systems are working normally and the satellite is ready for full commissioning of its scientific instruments. With the end of LEOP, normal communications between the satellite and the ground are now being provided by ESA's ESTRACK station at Kiruna, Sweden.

"Everything is working well and we have a healthy satellite. Today, we will end round-the-clock staffing in the Main Control Room and move the Flight Control Team to regular work-day operations in the Dedicated Control Room," said Flight Operations Director Pier Paolo Emanuelli speaking this morning at ESA's European Space Operations Centre (ESOC), Darmstadt, Germany.

A major aim of this week's LEOP work was to bring the Satellite-to-Satellite Tracking Instrument (SSTI) - a highly accurate GPS (Global Positioning Satellite) receiver - into full operation. Emanuelli confirmed that it is working normally.
"Switching on the SSTI was especially important, as this meant the satellite could start performing its own autonomous orbit determinations. SSTI identifies GOCE's position very accurately, and we need this functioning before we can bring the satellite into its final drag-free operations mode," he said.

First science data sets already received

In addition to providing realtime navigation data for flight control, SSTI is one of GOCE's two payload instruments and it is a very accurate scientific tool for recording and reconstructing the satellite's actual orbit. The first SSTI data have already been received at the Payload Data Ground Segment at ESA's Earth Observation Centre (ESRIN), Frascati, Italy.

"Receiving initial science data from SSTI so soon has been an excellent first step and, now that the SSTI is operating, we are already proceeding with commissioning of the scientific payload," said GOCE Mission Manager Rune Floberghagen, who worked in ESOC's Main Control Room alongside the Mission Control Team during LEOP to monitor progress.

"GOCE is operating very well, and we are already looking forward to commissioning our other main instrument, the Electrostatic Gravity Gradiometer, starting in mid-April. It's going to be a very busy but tremendously exciting time as we begin science operations," said Floberghagen.

In the coming weeks, the mission is expected to achieve a number of crucial milestones, including switching on the electric ion propulsion, switching into Drag-Free Attitude Control mode and lowering the orbit to the planned altitude of about 260 km.

Jocelyne Landeau-Constantin | EurekAlert!
Further information:
http://www.esa.int/SPECIALS/Operations/SEMZ8TJTYRF_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>