Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Go-ahead for international stellarator project

28.10.2019

German-American Joint Project / Funding by Helmholtz Association

The Max Planck Institute for Plasma Physics (IPP) in Greifswald and the U.S. University of Wisconsin-Madison have founded a joint research project to investigate the power exhaust from a hot stellarator plasma. The Helmholtz International Lab for Optimized Advanced Divertors in Stellarators (HILOADS), in which Forschungszentrum Jülich and Auburn University in Alabama also participate, is financially supported by the Helmholtz Association of German Research Centres.


The Wendelstein 7-X stellarator device in Greifswald

Foto: IPP, Volker Steger

Fusion systems of the stellarator type promise high-performance plasmas in continuous operation. Accordingly, heat and particles from the hot plasma permanently stress the vessel walls.

It is the task of the so-called divertor – a system of specially equipped baffle plates to which the particles from the edge of the plasma are magnetically directed – to regulate the interaction between plasma and wall.

The structure of the magnetic field and the choice of material for the plates determine how well the divertor can perform this task and how well the plasma can be thermally insulated. The divertor design for new stellarators is therefore highly demanding in terms of both plasma physics and technology and requires extensive experimental and theoretical investigations.

For this purpose, IPP in Greifswald and the University of Wisconsin-Madison have now founded the Helmholtz International Lab for Optimized Advanced Divertors in Stellarators (HILOADS).

HILOADS offers the framework to intensify the successful cooperation of the University of Wisconsin in Madison as central institution with IPP in Greifswald, Forschungszentrum Jülich and further US-American universities. The scientists involved will optimise and coordinate divertor designs, materials and plasma confinement.

For the experiments required for this, both Wendelstein 7-X in Greifswald, the world's largest stellarator, and the much smaller but very flexible HSX (Helical Symmetric Experiment) in Madison are available. The two devices differ not only in size, but also in their completely different concepts for the divertor and for optimising plasma confinement.

In addition, there is the small CTH (Compact Toroidal Hybrid) device in Auburn. In addition to these three stellarators, two linear plasma systems will be used for investigations on materials and wall conditioning as well as for the development of measuring instruments: PSI-2 in Jülich and MARIA in Madison. Equipped in this way, HILOADS will promote the development of the next generation of optimised stellarators and, in particular, support the development of a concept for a new medium-sized stellarator experiment in Madison.

With the funding programme of 'Helmholtz International Labs', the Helmholtz Association, to which the IPP is affiliated as an associated institute, aims to expand international cooperation with excellent research institutions and create visible research activities of the Association at locations abroad.

The Helmholtz Association will provide 24 percent of the 6.125 million euros estimated for HILOADS over the next five years. The universities in Madison and Auburn will contribute 35 and 15 percent, respectively, IPP and Forschungszentrum Jülich 18 and 8 percent, respectively. HILOADS is scheduled to start in spring 2020.

Background
The aim of fusion research is to develop an environmentally sound and climate-friendly power plant. Similar to the sun, it will generate energy from the fusion of atomic nuclei. Because the fusion fire only ignites at temperatures above 100 million degrees, the fuel – a low-density hydrogen plasma – must not come into contact with the cold vessel walls. Confined by magnetic fields, it floats almost contact-free inside a vacuum chamber. The Wendelstein 7-X stellarator in Greifswald is intended to investigate the suitability of this type of device for a power plant.

Weitere Informationen:

https://www.ipp.mpg.de/4753762/08_19

Isabella Milch | Max-Planck-Institut für Plasmaphysik

More articles from Physics and Astronomy:

nachricht A one-way street for light
15.11.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht TU Graz researchers develop new 3D printing for the direct production of nanostructures
14.11.2019 | Technische Universität Graz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New laser opens up large, underused region of the electromagnetic spectrum

15.11.2019 | Power and Electrical Engineering

NASA sending solar power generator developed at Ben-Gurion U to space station

15.11.2019 | Power and Electrical Engineering

Typhoons and marine eutrophication are probably the missing source of organic nitrogen in ecosystems

15.11.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>