Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the looking glass

17.08.2009
While the researchers can't promise delivery to a parallel universe or a school for wizards, books like Pullman's Dark Materials and JK Rowling's Harry Potter are steps closer to reality now that researchers in China have created the first tunable electromagnetic gateway.

The work, 'A simple route to a tunable electromagnetic gateway' is a further advance in the study of metamaterials, published today, Thursday, 14 August, in New Journal of Physics (co-owned by the Institute of Physics and German Physical Society). It has been published at http://stacks.iop.org/NJP/11/083012.

In the research paper, the researchers from the Hong Kong University of Science and Technology and Fudan University in Shanghai describe the concept of a "a gateway that can block electromagnetic waves but that allows the passage of other entities" like a "'hidden portal' as mentioned in fictions."

The gateway, which is now much closer to reality, uses transformation optics and an amplified scattering effect from an arrangement of ferrite materials called single-crystal yttrium-iron-garnet that force light and other forms of electromagnetic radiation in complicated directions to create a hidden portal.

Previous attempts at an electromagnetic gateway were hindered by their narrow bandwidth, only capturing a small range of visible light or other forms of electromagnetic radiation. This new configuration of metamaterials however can be manipulated to have optimum permittivity and permeability – able to insulate the electromagnetic field that encounters it with an appropriate magnetic reaction.

Because of the arrangement's response to magnetic fields it also has the added advantage of being tunable and can therefore be switched on and off remotely.

Dr Huanyang Chen from the Physics Department at Hong Kong University of Science and Technology has commented, "In the frequency range in which the metamaterial possesses a negative refraction index, people standing outside the gateway would see something like a mirror. Whether it can block all visible light depends on whether one can make a metamaterial that has a negative refractive index from 300 to 800 nanometres."

Metamaterials, the area of physics research behind the possible creation of a real Harry Potter-style invisibility cloak, are exotic composite materials constructed at the atomic (rather than the usual chemical) level to produce materials with properties beyond those which appear naturally.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>