Glaciers sizzle as they disappear into warmer water

Scientists have recorded and identified one of the most prominent sounds of a warming planet: the sizzle of glacier ice as it melts into the sea. The noise, caused by trapped air bubbles squirting out of the disappearing ice, could provide clues to the rate of glacier melt and help researchers better monitor the fast-changing polar environments.

Geophysicist Erin Pettit, a researcher at the University of Alaska, had often heard popping, crackling sounds while out kayaking in the frigid northern waters. The sounds were also picked up by underwater microphones Pettit set up off the Alaskan coast, and at a much louder volume than above the surface.

“If you were underneath the water in a complete downpour, with the rain pounding the water, that's one of the loudest natural ocean sounds out there,” she said. “In glacial fjords we record that level of sound almost continually.”

While Pettit suspected the din was caused by melting ice, she couldn't confirm that hypothesis without a more controlled experiment. So she enlisted the help of Kevin Lee and Preston Wilson, acoustics experts from the University of Texas. Pettit sent the Texas researchers chunks of glacier, which they mounted in a tank of chilled water. Lee and Wilson recorded video and audio of the ice as it melted and were able to match sounds on the recording to the escape of bubbles from the ice.

“Most of the sound comes from the bubbles oscillating when they're ejected,” Lee said. “A bubble when it is released from a nozzle or any orifice will naturally oscillate at a frequency that's inversely proportional to the radius of the bubble,” he said, meaning the smaller the bubble, the higher the pitch. The researchers recorded sounds in the 1 – 3 kilohertz range, which is right in the middle of the frequencies humans hear.

Scientists have known for decades that the bubbles in glaciers form when snow crystals trap pockets of air and then get slowly squashed down under the weight of more snow. As the snow is compacted it turns into ice and the air bubbles become pressurized. The regular way the bubbles form means that they are evenly distributed throughout the ice, an important characteristic if you want to use the sound intensity of bubble squirts to measure ice melt rate.

While the symphony of melting ice might not carry the same emotional wallop as images, sound still has its own, sometimes very loud, story to tell. Pettit and Lee say they could imagine using hydrophone recordings in glacial fjords to monitor relative changes in glacier melting in response to one-time weather events, seasonal changes, and long-term climate trends. Because sound travels long distances underwater, recording microphones can be placed a safe distance from unstable ice sheets. The audio recordings would complement other measurements of ice melt, such as time-lapse photography and salinity readings.

Presentation 4aUW4, “Underwater sound radiated by bubbles released by melting glacier ice,” will take place on Thursday, Dec. 5, 2013, at 9:55 a.m. The abstract describing this work can be found here: http://asa2013.abstractcentral.com/planner.jsp.

ABOUT THE MEETING

The 166th Meeting of the Acoustical Society of America (ASA), to be held Dec. 2-6, 2013, at the Hilton San Francisco Union Square, will feature more than 1,100 presentations on sound and its applications in physics, engineering, and medicine. The meeting program can be accessed at: http://asa2013.abstractcentral.com/planner.jsp.
OTHER USEFUL LINKS

Main meeting website: http://acousticalsociety.org/meetings/san_francisco Hotel site: http://www.sanfrancisco.hilton.com ASA World Wide Press Room: http://www.acoustics.org/press
WORLD WIDE PRESS ROOM

ASA's World Wide Press Room (http://www.acoustics.org/press) will feature dozens of newsworthy stories through lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio, and video.
PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Jason Bardi (jbardi@aip.org, 240-535-4954), who can also help with setting up interviews and obtaining images, sound clips, or background information.
LIVE MEDIA WEBCAST

A press briefing featuring a selection of newsworthy research will be webcast live from the conference. Date and time to be announced. To register, visit http://www.aipwebcasting.com.
ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, ECHOES newsletter, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

This news release was prepared for the Acoustical Society of America (ASA) by the American Institute of Physics (AIP).

Contacts:
Jason Socrates Bardi
jbardi@aip.org
(240) 535-4954
Jennifer Lauren Lee
jlee@aip.org
(301) 209-3099

Media Contact

Jennifer Lauren Lee EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors