Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gift-Wrapped Gas Molecules

02.01.2015

Scientists in France and Scotland identify new encapsulation agents for delivery of nitric oxide, a potent antibacterial agent and vasodilator

A group of scientists led by researchers at the Université de Versailles' Institut Lavoisier in France has worked out how to stably gift-wrap a chemical gas known as nitric oxide within metal-organic frameworks. Such an encapsulated chemical may allow doctors to administer nitric oxide in a more highly controlled way to patients, suggesting new approaches for treating dangerous infections and heart conditions with the biologically-active substance.


CREDIT: Serre/Institut Lavoisier

Left: The crystal structure of a porous iron carboxylate MOF (iron octahedra, oxygen, carbon and hydrogen atoms are in green, red, black and white, respectively); Center: Binding of a NO molecule over an iron site; Right: Kinetics of delivery of NO (inset at the biological level) triggered by water

Not to be confused with the chemically-distinct anesthetic dentists use -- its cousin nitrous oxide (NO2), also known as laughing gas -- nitric oxide (NO) is one of very few gas molecules known to be involved in biological signaling pathways, the physiological gears that make the body tick at the microscopic level. It is very active biologically and can be found in bacteria, plant, animal and fungi cells.

In humans, NO is a powerful vasodilator, increasing blood flow and lowering vascular pressure. For this reason, gaseous NO is sometimes used to treat respiratory failure in premature infants. It also has strong antibacterial potency, owing to its molecular action as a biologically disruptive free radical, and cells in the human immune system naturally produce NO as a way of killing pathogenic invaders. Additionally, nitric oxide is believed to be the main vasoactive neurotransmitter regulating male erection, as aging nerves with reduced stimulation can inhibit the release of the molecule, thus causing erectile dysfunction. This, of course, can be mediated by taking nitric oxide supplements to achieve an erection.

While such activity would seem to make NO a prime candidate for drug design, the problem is delivery -- because it is a gas. In recent years, the gas storage capacity and biocompatibility of metal-organic-frameworks -- dissolvable compounds consisting of metal ions and rigid organic chemicals that can stably trap gas molecules -- have gained significant attention as candidates for delivering gas-based drugs. The new work extends this further than ever before, showing that these metal-organic frameworks can store and slowly deliver NO over an unprecedented amount of time, which is key for the drug's anti-thrombogenic action.

"This is an elegant and efficient method to store and deliver large amounts of NO for antibacterial purposes," said Christian Serre. "Or it can release controlled amounts of nitric oxide at the very low biological level for a prolonged period of time, in order to use it as a way to inhibit platelet aggregation." Serre is a CNRS research director at the Institut Lavoisier de Versailles, and also heads the institute's 'Porous Solids' research group.

Serre's consortium has previously reported the use of porous hybrid solids, such as metal-organic-frameworks, for the controlled delivery of nitric oxide gas. Their current paper on derivatives of iron polycarboxylates as framework candidate appears in the journal APL Materials, from AIP Publishing.

Serre and his group worked in collaboration with Russell Morris's team at the University of St Andrews in Scotland and researchers from Université de Basse-Normandie in France. The groups analyzed the NO adsorption and release properties of several porous biodegradable and biocompatible iron carboxylate metal-organic frameworks by use of infrared spectroscopy analysis, adsorption & desorption isotherms and water-triggered release tests.

In doing so, they confirmed the large nitric oxide absorption capacity of the iron frameworks, and that the NO was strongly bonding to the acidic metal sites on the molecules. Serre's group and coauthors also found that partially reducing the iron (III) into iron (II) enhances the affinity of the NO molecules for the framework. This strong interaction allows for a controlled release for a prolonged state of time -- days, at the biological level. This time scale depends on both the metal-organic framework structure and the oxidation state of iron, which can be carefully calibrated as needed for drug treatment.

These performances, associated with the biodegradable and low toxicity character of these metal-organic frameworks, might pave the way for their use in medical therapies or cosmetics formulation, which is one of the objectives of Serre's consortium in the near future. Current and forthcoming work includes using further spectroscopic experiments to understand the complex behavior of the iron frameworks once loaded with nitric oxide.

The article, "Porous, rigid metal(III)-carboxylate MOFs for the delivery of nitric oxide," is authored by Jarrod F. Eubank, Paul S. Wheatley, Gaëlle Lebars, Alistair C. McKinlay, Hervé Leclerc, Patricia Horcajada, Marco Daturi, Alexandre Vimont, Russell E. Morris and Christian Serre. It will appear in the journal APL Materials on December 30, 2014 (DOI: 10.1063/1.4904069). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/aplmater/2/12/10.1063/1.4904069

ABOUT THE JOURNAL

APL Materials is a new open access journal featuring original research on significant topical issues within the field of materials science. See: http://aplmaterials.aip.org

Contact Information
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

American Institute of Physics (AIP) | VTT Newsletter

Further reports about: Gas Molecules antibacterial biodegradable capacity deliver gas molecules inhibit nitric nitric oxide porous

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>