Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Virus Revealed in 3-D Using X-ray Laser

04.03.2015

Experiment Compiles Hundreds of Images, Reveals Inner Details of Intact ‘Mimivirus’

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy’s SLAC National Accelerator Laboratory. The virus, called Mimivirus, is in a curious class of “giant viruses” discovered just over a decade ago.


Uppsala University

This computerized rendering shows a cutaway view of a collection of about 200 X-ray patterns, produced in an experiment at SLAC’s Linac Coherent Light Source X-ray laser. The images were combined to produce a 3-D rendering of an intact Mimivirus, a giant virus that was at first mislabeled as a bacterium because of its size.


Uppsala University

This rendering shows a 3-D reconstruction of a Mimivirus, based on an analysis of data obtained in an experiment at SLAC's Linac Coherent Light Source X-ray laser that show the electron density of an intact Mimivirus, a type of giant virus. The blue regions represent the areas of highest density.

The experiment at SLAC’s Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility, establishes a new technique for reconstructing the 3-D structure of many types of biological samples from a series of X-ray laser snapshots.

“Ever since I started in this field of X-ray laser research, this has always been the dream – to acquire 3-D images of real biological samples,” said Tomas Ekeberg, a biophysicist at Uppsala University in Sweden and lead author of the study, published March 2 in Physical Review Letters. “This is fantastic – it’s a breakthrough in our research.”

Mysterious World of Giant Viruses

Mimivirus is so big – its volume is thousands of times larger than the smallest viruses and even larger than some bacteria – that it was misclassified as a bacterium until 2003. Subsequent discoveries have found other giant viruses, some of which are even larger.

Mimivirus is also genetically complex, with nearly 1,000 major genes compared to only a handful in the HIV virus.

Scientists have been trying to determine the inner structure of these giant viruses to learn more about their origins: For example, did they borrow genes over time from the host organisms they infect, like amoebas? Did they precede cell-based life or devolve from cell-based organisms?

Light Pattern Portrait

In the LCLS experiment, researchers sprayed a gas-propelled aerosol containing active Mimivirus samples in a thin stream into the X-ray laser beam, which scattered off the viruses and produced light patterns on a detector that were recorded as diffraction images.

Researchers customized sophisticated analysis software developed at Cornell University to compile hundreds of individual images from separate virus particles into a single 3-D portrait showing the general shape and inner features of Mimivirus. Each image captured a projection of a separate virus particle at a random orientation, so the collection of images of viruses in different orientations provided a more complete, 3-D view.

While the technique used at LCLS did not provide high-resolution details of the internal virus structure, it did confirm that its contents are lopsided, with an area that appears more densely concentrated.

“We can see quite clearly that the inside of these viruses is not uniform,” Ekeberg said.

This same general feature had also been seen before using an electron-based imaging technique with frozen samples, and LCLS allows studies of viruses and other biological samples in a more natural, intact state. Researchers said that LCLS shows promise for achieving sharper images that reveal more inner details in the future because of the uniquely intense, penetrating power of its X-rays.

3-D Vision for X-ray Laser Studies

The same technique was recently used to study bacterial cell structures. LCLS managers have launched an initiative with the scientific community to improve techniques for imaging intact, biological particles that are difficult to study.

Janos Hajdu, a professor of biophysics at Uppsala and a pioneer in biological particle imaging with X-ray lasers, said the research team plans to apply the 3-D imaging technique to other types of samples and to improve the image quality. He said, “The next Holy Grail is to study large, single proteins at LCLS.”

Participants in the research included scientists from SLAC’s LCLS, Lawrence Berkeley National Laboratory and Kansas State University; Uppsala University in Sweden; Aix Marseille University and CEA-Saclay in France; the Center for Free-Electron Laser Science at DESY, University of Hamburg in Germany, PNSensor GmbH, Max Planck Institute’s Semiconductor Laboratory, Max Planck Institute for Extraterrestrial Physics in Germany, and the European XFEL in Germany; National University of Singapore; and The University of Melbourne in Australia. The work was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council, the Röntgen-Ångström Cluster, and Stiftelsen Olle Engkvist Byggmästare.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andrew Gordon | newswise

Further reports about: 3-D Accelerator Germany Giant LCLS Laser SLAC Virus X-ray biological samples technique viruses

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>