Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant 'great valley' found on Mercury

21.11.2016

On Earth, massive chasm would reach between Detroit, New York City, and Washington, D.C.

A newly discovered giant valley on the planet Mercury makes the Grand Canyon look tiny by comparison. Located by scientists at the University of Maryland, the Smithsonian Institution, the German Institute of Planetary Research and Moscow State University, the expansive valley holds an important key to the geologic history of the innermost planet in our solar system.


Using colorized topography, Mercury's 'great valley' (dark blue) and Rembrandt impact basin (purple, upper right) are revealed in this high-resolution digital elevation model merged with an image mosaic obtained by NASA's MESSENGER spacecraft.

Credit: NASA/JHUAPL/Carnegie Institution of Washington/DLR/Smithsonian Institution

Discovered using stereo images from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, the "great valley" lies in the planet's southern hemisphere and overlaps the Rembrandt Basin--a large crater formed by a relatively recent impact from an asteroid or other such body. But the "great valley" formed in a much different way, according to a research paper published online November 16, 2016 in the journal Geophysical Research Letters.

Unlike Earth, which has a crust and upper mantle (collectively known as the lithosphere) divided into multiple tectonic plates, Mercury has a single, solid lithosphere that covers the entire planet. As the planet cooled and shrank early in its history, roughly 3-4 billion years ago, Mercury's lithosphere buckled and folded to form the valley, much like the skin of a grape folds as it dries to become a raisin.

"This is a huge valley. There is no evidence of any geological formation on Earth that matches this scale," said Laurent Montesi, an assistant professor of geology at UMD and a co-author of the research paper. "Mercury experienced a very different type of deformation than anything we have seen on Earth. This is the first evidence of large-scale buckling of a planet."

The valley is about 250 miles wide and 600 miles long, with steep sides that dip as much as 2 miles below the surrounding terrain. To put this in perspective: if Mercury's "great valley" existed on Earth, it would be almost twice as deep as the Grand Canyon and reach from Washington, D.C. to New York City, and as far west as Detroit.

More notable than its size, according to Montesi, is how the valley most likely formed and what that reveals about Mercury's geologic history.

The valley's walls appear to be two large, parallel fault scarps--step-like structures where one side of a fault moved vertically with respect to the other. Both scarps plunge steeply to the flat valley floor below. According to Montesi and his co-authors, the best explanation is that Mercury's interior cooled rapidly, forming a strong, thick lithosphere. The entire floor of the newly discovered valley is one giant piece of this lithosphere that dropped between the two faults on either side.

This would make sense if, like most planets, Mercury has been steadily cooling since its formation. But Montesi notes that there are several clues to suggest that Mercury went through a more recent period of warming. This analysis, if true, would upend some time-tested assumptions about Mercury's geologic past.

"Most features on Mercury's surface are truly ancient, but there is evidence for recent volcanism and an active magnetic field. This evidence implies that the planet is warm inside," Montesi said. "Everyone thought Mercury was a very cold planet--myself included. But it looks like Mercury might have heated significantly in recent planetary history."

###

The research paper, "Fault-bound Valley Associated with the Rembrandt Basin on Mercury," Thomas Watters, Laurent Montési, Jürgen Oberst, and Frank Preusker, was first published online November 16, 2016 in the journal Geophysical Research Letters.

This work was supported by NASA (Award No. NNX07AR60G) and the Russian Science Foundation (Award No. 14-22-00197). The content of this article does not necessarily reflect the views of these organizations.

Media Relations Contact: Matthew Wright, 301-405-9267, mewright@umd.edu

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

Media Contact

Matthew Wright
mewright@umd.edu
301-405-9267

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Matthew Wright | EurekAlert!

Further reports about: Geophysical Research Grand Canyon Mercury giant valley lithosphere

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>