Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GESTRA – New space surveillance capabilities in Germany

12.04.2018

The researchers at Fraunhofer FHR are currently developing an innovative radar system on behalf of the Space Administration of the German Aerospace Center (DLR). On completion, the system will allow 24/7 observation of near-Earth space. When put into operation at the German Aerospace Center in mid-2019, GESTRA will supply space object-related data that was previously not available – a milestone in space observation in Germany. Learn more about the new system at ILA Berlin from 25-29 April 2018.

Due to its many years of experience in the area of space observation with radar, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR is a renowned expert in this field. With its radar system TIRA, the institute offers capabilities that are not available anywhere else in the world.


Complex, leading-edge technology in GESTRA: 40 subsystems on 8 enormous circuit boards (130 cm x 55 cm) are mounted directly on the aluminum antenna plate with cooling circuit.

Fraunhofer FHR


Space surveillance with GESTRA: electronically steerable antennas allow the tracking of detected objects parallel to an uninterrupted search for further objects in space.

Fraunhofer FHR

At the beginning of April, Fraunhofer FHR provided the last images of the Chinese space station Tiangong-1. These images went around the world. The scientists are, however, working hard to extend these capabilities. With the new radar system GESTRA (German Experimental Space Surveillance and Tracking Radar), round-the-clock observation of active satellites and space debris will be possible for the first time in Germany. This will pave the way for the creation of an orbital data catalog which will be instrumental in preventing collisions.

Radar warns of space debris

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space debris resulting, for example, from burned-out rocket stages and fragments of exploded space objects. These are gradually transforming the orbit into a junkyard. Approximately 20,000 objects with a minimum diameter of ten centimeters are presently orbiting the Earth at an average speed of 25,000 kilometers per hour. Added to this are 700,000 smaller objects with a diameter greater than one centimeter. Due to their enormous speed, these small debris particles can also damage or destroy active satellites.

Collisions between space debris and satellites can be prevented by means of evasive maneuvers. Maneuvers of this kind are, however, time consuming and tie up valuable resources and are therefore only required by operators when the satellite is in real danger. Comprehensive cataloging of the space objects and high-precision orbit determination of the potential collision objects are essential to assess this risk. Radar systems can carry out both of these tasks.

GESTRA: Wide-range space surveillance with leading-edge technology

Seamless and continuous space surveillance can only be achieved with phased array radars. The electronically controlled array antennas are capable of conducting large-scale space surveillance in near-Earth space around the clock. The new space surveillance radar GESTRA, which is currently being developed by Fraunhofer FHR for the Space Administration of the German Aerospace Center (DLR), is equipped with an electronically steerable antenna which is able to scan large areas of the sky within milliseconds due to the integration of the latest semiconductor technology.

The sensor consists of a transmit and receive module, each of which is integrated into an 18 m x 4 m x 4 m shelter. Due to its compact design, GESTRA is a mobile system which can be transported to any required location.

When put into operation for the German Space Situational Awareness Center of the German Armed Forces in 2019, wide-range surveillance of the debris population in near-Earth space (orbital heights of 300 km to 3,000 km) will be possible from German territory for the first time. GESTRA will then operate continuously to create a catalog of the debris in near-Earth space. This new data basis will have a great influence on the further development and operation of the space infrastructure of Germany and Europe.

Learn more about the new GESTRA system

On Monday 23.04.2018 at 10 a.m., Fraunhofer FHR will present the space surveillance radar GESTRA and its innovative and complex techniques in a film which can be viewed at www.fhr.fraunhofer.de/gestra.

Visit us at the ILA Berlin from 25-29 April 2018. Information on GESTRA will be available at three exhibition stands: Hall 4, Stand 202 (Fraunhofer-Gesellschaft), Hall 3, Stand 302 (German Space Situational Awareness Center of the German Armed Forces) and Hall 2, Stand 203 (Federal Ministry of Economic Affairs and Energy).

Weitere Informationen:

https://www.fhr.fraunhofer.de/en/press-media/press-releases/gestra-new-space-sur... Printable images and the press release
GESTRA-Filmteaser: https://www.youtube.com/watch?v=4MdmSxXcJ4M

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

More articles from Physics and Astronomy:

nachricht Weighing planets and asteroids
23.10.2018 | Max-Planck-Institut für Radioastronomie

nachricht Extremely Thin, Stable, and Bright: Materials for the Photonics of Tomorrow
23.10.2018 | Universität Bremen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>