Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GESTRA – New space surveillance capabilities in Germany

12.04.2018

The researchers at Fraunhofer FHR are currently developing an innovative radar system on behalf of the Space Administration of the German Aerospace Center (DLR). On completion, the system will allow 24/7 observation of near-Earth space. When put into operation at the German Aerospace Center in mid-2019, GESTRA will supply space object-related data that was previously not available – a milestone in space observation in Germany. Learn more about the new system at ILA Berlin from 25-29 April 2018.

Due to its many years of experience in the area of space observation with radar, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR is a renowned expert in this field. With its radar system TIRA, the institute offers capabilities that are not available anywhere else in the world.


Complex, leading-edge technology in GESTRA: 40 subsystems on 8 enormous circuit boards (130 cm x 55 cm) are mounted directly on the aluminum antenna plate with cooling circuit.

Fraunhofer FHR


Space surveillance with GESTRA: electronically steerable antennas allow the tracking of detected objects parallel to an uninterrupted search for further objects in space.

Fraunhofer FHR

At the beginning of April, Fraunhofer FHR provided the last images of the Chinese space station Tiangong-1. These images went around the world. The scientists are, however, working hard to extend these capabilities. With the new radar system GESTRA (German Experimental Space Surveillance and Tracking Radar), round-the-clock observation of active satellites and space debris will be possible for the first time in Germany. This will pave the way for the creation of an orbital data catalog which will be instrumental in preventing collisions.

Radar warns of space debris

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space debris resulting, for example, from burned-out rocket stages and fragments of exploded space objects. These are gradually transforming the orbit into a junkyard. Approximately 20,000 objects with a minimum diameter of ten centimeters are presently orbiting the Earth at an average speed of 25,000 kilometers per hour. Added to this are 700,000 smaller objects with a diameter greater than one centimeter. Due to their enormous speed, these small debris particles can also damage or destroy active satellites.

Collisions between space debris and satellites can be prevented by means of evasive maneuvers. Maneuvers of this kind are, however, time consuming and tie up valuable resources and are therefore only required by operators when the satellite is in real danger. Comprehensive cataloging of the space objects and high-precision orbit determination of the potential collision objects are essential to assess this risk. Radar systems can carry out both of these tasks.

GESTRA: Wide-range space surveillance with leading-edge technology

Seamless and continuous space surveillance can only be achieved with phased array radars. The electronically controlled array antennas are capable of conducting large-scale space surveillance in near-Earth space around the clock. The new space surveillance radar GESTRA, which is currently being developed by Fraunhofer FHR for the Space Administration of the German Aerospace Center (DLR), is equipped with an electronically steerable antenna which is able to scan large areas of the sky within milliseconds due to the integration of the latest semiconductor technology.

The sensor consists of a transmit and receive module, each of which is integrated into an 18 m x 4 m x 4 m shelter. Due to its compact design, GESTRA is a mobile system which can be transported to any required location.

When put into operation for the German Space Situational Awareness Center of the German Armed Forces in 2019, wide-range surveillance of the debris population in near-Earth space (orbital heights of 300 km to 3,000 km) will be possible from German territory for the first time. GESTRA will then operate continuously to create a catalog of the debris in near-Earth space. This new data basis will have a great influence on the further development and operation of the space infrastructure of Germany and Europe.

Learn more about the new GESTRA system

On Monday 23.04.2018 at 10 a.m., Fraunhofer FHR will present the space surveillance radar GESTRA and its innovative and complex techniques in a film which can be viewed at www.fhr.fraunhofer.de/gestra.

Visit us at the ILA Berlin from 25-29 April 2018. Information on GESTRA will be available at three exhibition stands: Hall 4, Stand 202 (Fraunhofer-Gesellschaft), Hall 3, Stand 302 (German Space Situational Awareness Center of the German Armed Forces) and Hall 2, Stand 203 (Federal Ministry of Economic Affairs and Energy).

Weitere Informationen:

https://www.fhr.fraunhofer.de/en/press-media/press-releases/gestra-new-space-sur... Printable images and the press release
GESTRA-Filmteaser: https://www.youtube.com/watch?v=4MdmSxXcJ4M

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

More articles from Physics and Astronomy:

nachricht Junior scientists at the University of Rostock invent a funnel for light
27.03.2020 | Universität Rostock

nachricht Ultrafast and broadband perovskite photodetectors for large-dynamic-range imaging
23.03.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>