Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GESTRA – New space surveillance capabilities in Germany

12.04.2018

The researchers at Fraunhofer FHR are currently developing an innovative radar system on behalf of the Space Administration of the German Aerospace Center (DLR). On completion, the system will allow 24/7 observation of near-Earth space. When put into operation at the German Aerospace Center in mid-2019, GESTRA will supply space object-related data that was previously not available – a milestone in space observation in Germany. Learn more about the new system at ILA Berlin from 25-29 April 2018.

Due to its many years of experience in the area of space observation with radar, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR is a renowned expert in this field. With its radar system TIRA, the institute offers capabilities that are not available anywhere else in the world.


Complex, leading-edge technology in GESTRA: 40 subsystems on 8 enormous circuit boards (130 cm x 55 cm) are mounted directly on the aluminum antenna plate with cooling circuit.

Fraunhofer FHR


Space surveillance with GESTRA: electronically steerable antennas allow the tracking of detected objects parallel to an uninterrupted search for further objects in space.

Fraunhofer FHR

At the beginning of April, Fraunhofer FHR provided the last images of the Chinese space station Tiangong-1. These images went around the world. The scientists are, however, working hard to extend these capabilities. With the new radar system GESTRA (German Experimental Space Surveillance and Tracking Radar), round-the-clock observation of active satellites and space debris will be possible for the first time in Germany. This will pave the way for the creation of an orbital data catalog which will be instrumental in preventing collisions.

Radar warns of space debris

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space debris resulting, for example, from burned-out rocket stages and fragments of exploded space objects. These are gradually transforming the orbit into a junkyard. Approximately 20,000 objects with a minimum diameter of ten centimeters are presently orbiting the Earth at an average speed of 25,000 kilometers per hour. Added to this are 700,000 smaller objects with a diameter greater than one centimeter. Due to their enormous speed, these small debris particles can also damage or destroy active satellites.

Collisions between space debris and satellites can be prevented by means of evasive maneuvers. Maneuvers of this kind are, however, time consuming and tie up valuable resources and are therefore only required by operators when the satellite is in real danger. Comprehensive cataloging of the space objects and high-precision orbit determination of the potential collision objects are essential to assess this risk. Radar systems can carry out both of these tasks.

GESTRA: Wide-range space surveillance with leading-edge technology

Seamless and continuous space surveillance can only be achieved with phased array radars. The electronically controlled array antennas are capable of conducting large-scale space surveillance in near-Earth space around the clock. The new space surveillance radar GESTRA, which is currently being developed by Fraunhofer FHR for the Space Administration of the German Aerospace Center (DLR), is equipped with an electronically steerable antenna which is able to scan large areas of the sky within milliseconds due to the integration of the latest semiconductor technology.

The sensor consists of a transmit and receive module, each of which is integrated into an 18 m x 4 m x 4 m shelter. Due to its compact design, GESTRA is a mobile system which can be transported to any required location.

When put into operation for the German Space Situational Awareness Center of the German Armed Forces in 2019, wide-range surveillance of the debris population in near-Earth space (orbital heights of 300 km to 3,000 km) will be possible from German territory for the first time. GESTRA will then operate continuously to create a catalog of the debris in near-Earth space. This new data basis will have a great influence on the further development and operation of the space infrastructure of Germany and Europe.

Learn more about the new GESTRA system

On Monday 23.04.2018 at 10 a.m., Fraunhofer FHR will present the space surveillance radar GESTRA and its innovative and complex techniques in a film which can be viewed at www.fhr.fraunhofer.de/gestra.

Visit us at the ILA Berlin from 25-29 April 2018. Information on GESTRA will be available at three exhibition stands: Hall 4, Stand 202 (Fraunhofer-Gesellschaft), Hall 3, Stand 302 (German Space Situational Awareness Center of the German Armed Forces) and Hall 2, Stand 203 (Federal Ministry of Economic Affairs and Energy).

Weitere Informationen:

https://www.fhr.fraunhofer.de/en/press-media/press-releases/gestra-new-space-sur... Printable images and the press release
GESTRA-Filmteaser: https://www.youtube.com/watch?v=4MdmSxXcJ4M

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>