Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia State physicist, international researchers discover fastest light-driven process

06.12.2012
A discovery that promises transistors – the fundamental part of all modern electronics – controlled by laser pulses that will be 10,000 faster than today's fastest transistors has been made by a Georgia State University professor and international researchers.

Professor of Physics Mark Stockman worked with Professor Vadym Apalkov of Georgia State and a group led by Ferenc Krausz at the prestigious Max Planck Institute for Quantum Optics and other well-known German institutions.

There are three basic types of solids: metals, semiconductors, used in today's transistors, and insulators – also called dielectrics.

Dielectrics do not conduct electricity and get damaged or break down if too high of fields of energy are applied to them. The scientists discovered that when dielectrics were given very short and intense laser pulses, they start conducting electricity while remaining undamaged.

The fastest time a dielectric can process signals is on the order of 1 femtosecond – the same time as the light wave oscillates and millions of times faster than the second handle of a watch jumps.

Dielectric devices hold promise to allow for much faster computing than possible today with semiconductors. Such a device can work at 1 petahertz, while the processor of today's computer runs slightly faster than at 3 gigahertz.

"Now we can fundamentally have a device that works 10 thousand times faster than a transistor that can run at 100 gigahertz," Stockman said. "This is a field effect, the same type that controls a transistor. The material becomes conductive as a very high electrical field of light is applied to it, but dielectrics are 10,000 times faster than semiconductors."

The results were published online Dec. 5 in Nature. The research institutions include the Max Planck Institute for Quantum Optics, the Department of Physics at the Munich Technical University, the Physics Department at Ludwig Maximilian University at Munich and the Fritz Haber Institute at Berlin, Germany.

At one time, scientists thought dielectrics could not be used in signal processing – breaking down when required high electric fields were applied. Instead, Stockman said, it is possible for them to work if such extreme fields are applied at a very short time.

In a second paper also published online Dec. 5 in Nature, Stockman and his fellow researchers experimented with probing optical processes in a dielectric – silica – with very short extreme ultraviolet pulses. They discovered the fastest process that can fundamentally exist in condensed matter physics, unfolding at about at 100 attoseconds – millions of times faster than the blink of an eye.

The scientists were able to show that very short, highly intense light pulses can cause on-off electric currents – necessary in computing to make the 1s and 0s needed in the binary language of computers -- in dielectrics, making extremely swift processing possible.

Stockman's work was supported by the U.S. Department of Energy.

The first paper, "Optical-field-induced current in dielectrics" is available through http://dx.doi.org/10.1038/nature11567. The second, "Controlling dielectrics with the electric field of light," is available through http://dx.doi.org/10.1038/nature11720.

Jeremy Craig | EurekAlert!
Further information:
http://www.gsu.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>