Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our galaxy might hold thousands of ticking 'time bombs'

07.09.2011
In the Hollywood blockbuster "Speed," a bomb on a bus is rigged to blow up if the bus slows down below 50 miles per hour. The premise - slow down and you explode - makes for a great action movie plot, and also happens to have a cosmic equivalent.

New research shows that some old stars might be held up by their rapid spins, and when they slow down, they explode as supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy.


New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

"We haven't found one of these 'time bomb' stars yet in the Milky Way, but this research suggests that we've been looking for the wrong signs. Our work points to a new way of searching for supernova precursors," said astrophysicist Rosanne Di Stefano of the Harvard-Smithsonian Center for Astrophysics (CfA).

The specific type of stellar explosion Di Stefano and her colleagues studied is called a Type Ia supernova. It occurs when an old, compact star known as a white dwarf destabilizes.

A white dwarf is a stellar remnant that has ceased nuclear fusion. It typically can weigh up to 1.4 times as much as our Sun - a figure called the Chandrasekhar mass after the astronomer who first calculated it. Any heavier, and gravity overwhelms the forces supporting the white dwarf, compacting it and igniting runaway nuclear fusion that blows the star apart.

There are two possible ways for a white dwarf to exceed the Chandrasekhar mass and explode as a Type Ia supernova. It can accrete gas from a donor star, or two white dwarfs can collide. Most astronomers favor the first scenario as the more likely explanation. But we would expect to see certain signs if the theory is correct, and we don't for most Type Ia supernovae.

For example, we should detect small amounts of hydrogen and helium gas near the explosion, but we don't. That gas would come from matter that wasn't accreted by the white dwarf, or from the disruption of the companion star in the explosion. Astronomers also have looked for the donor star after the supernova faded from sight, without success.

Di Stefano and her colleagues suggest that white dwarf spin might solve this puzzle. A spin-up/spin-down process would introduce a long delay between the time of accretion and the explosion. As a white dwarf gains mass, it also gains angular momentum, which speeds up its spin. If the white dwarf rotates fast enough, its spin can help support it, allowing it to cross the 1.4-solar-mass barrier and become a super-Chandrasekhar-mass star.

Once accretion stops, the white dwarf will gradually slow down. Eventually, the spin isn't enough to counteract gravity, leading to a Type Ia supernova.

"Our work is new because we show that spin-up and spin-down of the white dwarf have important consequences. Astronomers therefore must take angular momentum of accreting white dwarfs seriously, even though it's very difficult science," explained Di Stefano.

The spin-down process could produce a time delay of up to a billion years between the end of accretion and the supernova explosion. This would allow the companion star to age and evolve into a second white dwarf, and any surrounding material to dissipate.

In our Galaxy, scientists estimate that there are three Type Ia supernovae every thousand years. If a typical super-Chandrasekhar-mass white dwarf takes millions of years to spin down and explode, then calculations suggest that there should be dozens of pre-explosion systems within a few thousand light-years of Earth.

Those supernova precursors will be difficult to detect. However, upcoming wide-field surveys conducted at facilities like Pan-STARRS and the Large Synoptic Survey Telescope should be able to spot them.

"We don't know of any super-Chandrasekhar-mass white dwarfs in the Milky Way yet, but we're looking forward to hunting them out," said co-author Rasmus Voss of Radboud University Nijmegen, The Netherlands.

Christine Pulliam | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>