Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxies get up close and personal

07.03.2012
VST captures collisions in young galaxy cluster

The Hercules galaxy cluster (also known as Abell 2151) lies about 500 million light-years away in the constellation of Hercules. It is unlike other nearby galactic assemblies in many ways.


This new image, taken with the VLT Survey Telescope (VST) shows a wide variety of interacting galaxies in the young Hercules galaxy cluster. The sharpness of the picture and the sheer number of objects captured -- across a full square degree -- in less than three hours of observations attest to the great power of the VST and its OmegaCAM camera to explore the nearby universe. This picture has been cropped and does not cover the full VST field of view. Credit: ESO/INAF-VST/OmegaCAM. Acknowledgement: OmegaCen/Astro-WISE/Kapteyn Institute

As well as being rather irregular in shape, it contains a wide variety of galaxy types, particularly young, star-forming spiral galaxies, and there are no giant elliptical galaxies in sight.

The new image was taken with the VST, the most recent addition to ESO's Paranal Observatory in Chile (eso1119 - http://www.eso.org/public/news/eso1119/). The VST is a survey telescope equipped with OmegaCAM, a 268-megapixel camera that provides images covering very large areas on the sky. Normally only small telescopes can image large objects such as this in a single shot, but the 2.6-metre VST not only has a wide field, but can also exploit the superb conditions on Paranal to simultaneously obtain very sharp and deep images quickly.

Galaxy pairs getting up close and personal and on their way to merging into single, larger galaxies can be seen all over this image. The numerous interactions, and the large number of gas-rich, star-forming spiral galaxies in the cluster, make the members of the Hercules cluster look like the young galaxies of the more distant Universe [1]. Because of this similarity, astronomers believe that the Hercules galaxy cluster is a relatively young cluster. It is a vibrant and dynamic swarm of galaxies that will one day mature into one more similar to the older galaxy clusters that are more typical of our galactic neighbourhood.

Galaxy clusters are formed when smaller groups of galaxies come together due to the pull of their gravity. As these groups get closer to each other, the cluster becomes more compact and more spherical in shape. At the same time, the galaxies themselves get closer together and many start to interact. Even if spiral galaxies are dominant in the initial groups, the galactic collisions eventually distort their spiral structure and strip off their gas and dust, quenching most star formation. For this reason, most of the galaxies in a mature cluster are elliptical or irregular in shape. One or two large elliptical galaxies, formed from the merger of smaller galaxies and permeated by old stars, usually reside at the centres of these old clusters.

The Hercules galaxy cluster is believed to be a collection of at least three small clusters and groups of galaxies that are currently being assembled into a larger structure. Furthermore, the cluster itself is merging with other large clusters to form a galaxy supercluster. These giant collections of clusters are some of the largest structures in the Universe. The wide field of view and image quality of OmegaCAM on the VST make it ideal for studying the outskirts of galaxy clusters where the poorly-understood interactions between clusters are taking place.

This beautiful image shows not only the galaxies of the Hercules galaxy cluster, but also many faint and fuzzy objects in the background, which are galaxies that are much further away from us. Closer to home, several brilliant Milky Way stars are also visible in the foreground and there are even a few asteroids that have left short trails as they moved slowly across the image during the exposures.

Notes

[1] Objects in the very distant Universe are seen as they were when much younger, because it takes several billion years for their light to reach us.

More information

The VST programme is a joint venture between the INAF-Osservatorio Astronomico di Capodimonte, Naples, Italy and ESO. INAF designed and built the telescope with the collaboration of leading Italian industries and ESO was responsible for the enclosure and the civil engineering works at the site. OmegaCAM, the VST's camera, was designed and built by a consortium including institutes in the Netherlands, Germany and Italy with major contributions from ESO. The facility is operated by ESO, which also archives and distributes data from the telescope.

The year 2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

- Photos of VST: http://www.eso.org/public/images/archive/search/?category=1111&adv=&description=VST

- Photos of OmegaCAM: http://www.eso.org/public/images/archive/search/?category=1111&adv=&description=OmegaCAM

Contacts

Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Email: rhook@eso.org

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>