Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future of LEDs gets boost from verification of localization states in InGaN quantum wells

05.09.2019

A group of researchers in China confirms the existence of localization states of charge carriers within indium gallium nitride materials and establishes a reference for their emission properties.

Light-emitting diodes made of indium gallium nitride provide better luminescence efficiency than many of the other materials used to create blue and green LEDs. But a big challenge of working with InGaN is its known dislocation density defects that make it difficult to understand its emission properties.


LEDs made of indium gallium nitride provide better luminescence efficiency than many of the other materials used to create blue and green LEDs, but a big challenge of working with InGaN is its known dislocation density defects that make it difficult to understand its emission properties. Researchers report an InGaN LED structure with high luminescence efficiency and what is believed to be the first direct observation of transition carriers between different localization states within InGaN. This figure shows the transition process of carriers between different localization states with increasing temperatures.

Credit: Yangfeng Li

Usage Restrictions: Journalists may use this image only with appropriate credit.

In the Journal of Applied Physics, from AIP Publishing, researchers in China report an InGaN LED structure with high luminescence efficiency and what is believed to be the first direct observation of transition carriers between different localization states within InGaN. The localization states were confirmed by temperature-dependent photoluminescence and excitation power-dependent photoluminescence.

Localization states theory is commonly used to explain the high luminescence efficiency gained via the large number of dislocations within InGaN materials. Localization states are the energy minima states believed to exist within the InGaN quantum well region (discrete energy values), but a direct observation of localization states was elusive until now.

"Based primarily on indium content fluctuations, we explored the 'energy minima' that remain within the InGaN quantum well region," said Yangfeng Li, the paper's lead author and a now postdoctoral fellow at the Hong Kong University of Science and Technology. "Such energy minima will capture the charge carriers -- electrons and holes -- and prevent them from being captured by defects (dislocations). This means that the emission efficiency is less affected by the large number of defects."

The group's direct observation of localization states is an important discovery for the future of LEDs, because it verifies their existence, which was a long-standing open scientific question.

"Segregation of indium may be one of the reasons causing localization states," said Li. "Due to the existence of localization states, the charge carriers will mainly be captured in the localization states rather than by nonradiative recombination defects. This improves the high luminescence efficiency of light-emitting devices."

Based on the group's electroluminescence spectra, "the InGaN sample with stronger localization states provides more than a twofold enhancement of the light-output at the same current-injection conditions as samples of weaker localization states," Li said.

The researchers' work can serve as a reference about the emission properties of InGaN materials for use in manufacturing LEDs and laser diodes.

They plan to continue to explore gallium nitride-related materials and devices "not only to gain a better understanding of their localizations but also the properties of InGaN quantum dots, which are semiconductor particles with potential applications in solar cells and electronics," Li said. "We hope that other researchers will also conduct in-depth theoretical studies of localization states."

###

The article, "Visualizing carrier transitions between localization states in a InGaN yellow-green light-emitting-diode structure," is authored by Yangfeng Li, Zhen Deng, Ziguang Ma, Lu Wang, Haiqiang Jia, Wenxin Wang, Yang Jiang and Hong Chen. The article appears in the Journal of Applied Physics (DOI: 10.1063/1.5100989) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5100989.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5100989

More articles from Physics and Astronomy:

nachricht New insulation technique paves the way for more powerful and smaller chips
05.09.2019 | KU Leuven

nachricht Using lasers to study explosions
04.09.2019 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Next generation video: WDR and Fraunhofer HHI present significantly improved video quality at IFA 2019

The demand for even higher resolution videos will continue to increase in the coming years. For this reason, the German public service broadcaster WDR and the Fraunhofer Heinrich Hertz Institute HHI will collaborate in the coming months to test the Video Coding possibilities offered by the next international standard VVC/H.266.

VVC/H.266 is the successor standard to HEVC/H.265. The latter is currently the most modern and efficient standard for Video Coding and is used, for example, in...

Im Focus: Nanodiamonds in the brain

The recording of images of the human brain and its therapy in neurodegenerative diseases is still a major challenge in current medical research. The so-called blood-brain barrier, a kind of filter system of the body between the blood system and the central nervous system, constrains the supply of drugs or contrast media that would allow therapy and image acquisition. Scientists at the Max Planck Institute for Polymer Research (MPI-P) have now produced tiny diamonds, so-called "nanodiamonds", which could serve as a platform for both the therapy and diagnosis of brain diseases.

The blood-brain barrier is a physiological boundary layer that works highly selectively and thus protects the brain: On the one hand, pathogens or toxins are...

Im Focus: Entanglement sent over 50 km of optical fiber

For the first time, a team led by Innsbruck physicist Ben Lanyon has sent a light particle entangled with matter over 50 km of optical fiber. This paves the way for the practical use of quantum networks and sets a milestone for a future quantum internet.

The quantum internet promises absolutely tap-proof communication and powerful distributed sensor networks for new science and technology. However, because...

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

 
Latest News

New insulation technique paves the way for more powerful and smaller chips

05.09.2019 | Physics and Astronomy

Future of LEDs gets boost from verification of localization states in InGaN quantum wells

05.09.2019 | Physics and Astronomy

Porous silicon layers for more efficient lithium-ion batteries

05.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>