Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion science and astronomy collaboration enables investigation of the origin of heavy elements

13.03.2019

A research team of experts in atomic physics, nuclear fusion science, and astronomy succeeded in computing millions of highly accurate atomic data of neodymium ions in the Japan-Lithuania international collaboration. This research accelerates studies of a long-standing mystery regarding the origin of precious metals such as gold and platinum in our universe.

It is not yet identified where and how elements heavier than iron in the universe have been made. Drawing attention as one of the origins of the heavy elements is a merger of two neutron stars.


Artist's impression of a kilonova caused by a neutron star merger. In the material released by the merger, various heavy elements are formed, which then absorb and emit light. New atomic data calculations help to clarify kilonovae.

Credit: NAOJ

In August 2017, gravitational waves caused by the merger of two neutron stars 130 million years ago were detected. At the same time, emission of the light called kilonova was also observed.

The light of a kilonova comes from the material released by the merger of the neutron stars, and it is believed that the material contains abundant heavy elements, including precious metals such as gold and platinum, and rare earth metals such as neodymium.

Elements have the property of absorbing light. The wavelength of the light absorbed by the element and the degree of its absorption are unique to each element and they are called atomic data.

By using this atomic data, we can estimate the species and the abundance of heavy elements produced in the merger of neutron stars by analyzing the brightness and the wavelength distributions of the light of a kilonova.

However, the available atomic data of heavy elements are extremely limited in widely used world standard databases of the National Institute of Standards and Technology (NIST). Therefore, collaborative research in the fields of atomic physics, astronomy and fusion science is conducted to provide highly accurate atomic data for the light of a kilonova.

In nuclear fusion research, atomic data is necessary to analyze the amount and transport of impurities such as iron ions in high temperature plasmas. Daiji Kato, an Associate Professor at the National Institute for Fusion Science (NIFS) in Japan, is collaborating with Gediminas Gaigalas, Professor at Vilnius University in Lithuania, and colleagues in his group to advance research for constructing highly accurate atomic data by computation. Methods of computation that have been used for nuclear fusion research can be applied for atomic data to analyze the light of a kilonova.

The research team focused on singly-, doubly-, and triply-ionized neodymium ions which have the largest influence on the light of kilonovae. Neodymium ions can form more arrangements of constituent electrons than those of lighter elements such as iron, and provide a tremendous number of wavelengths for light absorption.

High precision computation of multiple-electron atoms is challenging due to difficulties in accounting for subtle correlations among electrons. In quantum mechanics, the correlation effects are represented by coherent superposition of different arrangements of constituent electrons. A virtually infinite number of arrangements are possible. The research team tested different sets of arrangements as to provide high accuracy data in realistic computation times, and succeeded in finding the optimal set of arrangements for each neodymium ion.

Computed energies of constituent electrons agree with NIST's world standard data within approximately 10% error in average, which is a much higher accuracy than has ever been achieved by the research team, and provide millions of wavelengths and probabilities for light absorption.

An astronomer in the team, Masaomi Tanaka, Associate Professor at Tohoku University simulated the light of kilonovae using both the data with the highest precision and the data with a poor accuracy. The influence of the difference in precision on the brightness of the light is evaluated quantitatively for the first time to be approximately 20% at most.

This value is sufficiently small to increase confidence in analysis of the light of kilonovae. Thus, the results of this research will accelerate research to elucidate the origins of precious metals such as gold and platinum in our universe by using the atomic data of highest precision.

###

These research results were published as Gaigalas et al. "Extended Calculations of Energy Level and Transition Rates of Nd II-IV Ions for Application to Neutron Star Mergers" in the Astrophysical Journal Supplement Series in February 2019.

Daiji Kato | EurekAlert!
Further information:
http://dx.doi.org/10.3847/1538-4365/aaf9b8

More articles from Physics and Astronomy:

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>