Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Function analysis drives the development of a concept Mars rover

03.11.2010
This human factors/ergonomics method, applied early in the rover's development, helped to ensure usability and effectiveness.

Humans have walked on the Moon, and inevitably, according to NASA, humans will tread the Red Planet as well, possibly by 2037.

An ergonomist and an industrial designer pondered the challenges of the Martian environment and developed an award-winning concept rover that could someday transport and house astronauts on the surface of Mars. The rover is described in an article to be published in Ergonomics in Design: The Quarterly of Human Factors Applications.

Using a human factors/ergonomics method called function analysis, part of a larger systems approach, Steven Casey and Gregg Montgomery considered the functional requirements of a future Mars exploration rover for use by people instead of robots. A number of questions needed to be answered before they could begin their design, these among them:

What functions will the system perform?
For what kinds of users is the system being designed?
How will the system be used, and how might the system be misused?
What might the user-system interfaces look like?
They conceptualized a vehicle that could withstand the extreme cold of Mars, with its pervasive dust, ultraviolet radiation, and seasonal storms. Features of the concept rover include a nuclear power source; enhanced handling and traction on Martian soil; robust, ceramic-matrix composite walls; maneuverability and visibility; lightweight, foldaway controls; and modular flexibility.

Conducting a function analysis early in the system development process is critical in ensuring that the vehicle can meet the demands of the environment and the users while also meeting constraints such as expense, weight, and shape.

Casey and Montgomery's concept Mars exploration rover received the GOOD DESIGN Award by the Chicago Athenaeum: Museum of Architecture and Design together with The European Centre for Architecture Art Design and Urban Studies. Future rovers may not resemble their rover concept in all details, but function analysis is certain to be part of the design, development, testing, and usability studies that theoretically should generate similar results and ensure the safety and comfort of the Mars explorers.

Media: For an advance copy of the complete article, contact HFES Communications Director Lois Smith (lois@hfes.org, 310/394-1811).

The Human Factors and Ergonomics Society is the world's largest nonprofit individual-member, multidisciplinary scientific association for HF/E professionals, with more than 4,500 members in the United States and other countries. HFES members include psychologists and other scientists, designers, and engineers, all of whom share a common interest in designing systems and equipment to be safe and effective for the people who operate and maintain them. "Human Factors and Ergonomics: People-Friendly Design Through Science and Engineering."

Lois Smith | EurekAlert!
Further information:
http://www.hfes.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>