Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fresh theories about dark matter

18.05.2015

Tom Broadhurst, the Ikerbasque researcher in the Department of Theoretical Physics of the UPV/EHU, together with Sandor Molnar of the National Taiwan University and visiting Ikerbasque researcher at the UPV/EHU in 2013, have conducted a simulation that explains the collision between two clusters of galaxies. Clusters of galaxies are the biggest objects that exist in the universe. They are collections of hundreds of thousands of galaxies pulled together by gravity.

Tom Broadhurst, the Ikerbasque researcher in the Department of Theoretical Physics of the UPV/EHU, together with Sandor Molnar of the National Taiwan University and visiting Ikerbasque researcher at the UPV/EHU in 2013, have conducted a simulation that explains the collision between two clusters of galaxies. Clusters of galaxies are the biggest objects that exist in the universe. They are collections of hundreds of thousands of galaxies pulled together by gravity.


An image comparing the data showing the many galaxies and the X-ray emission from the hot gas (left) with the model of the hot gas (right). The

Credit: UPV/EHU

In general, galaxy clusters grow in size by merging with each other to become increasingly larger. Gravitational forces cause them to slowly come together over time despite the expansion of the universe. The system known as "El Gordo", the biggest known cluster of galaxies, is in turn the result of the collision between two large clusters.

It was found that the collision process compresses the gas within each cluster to very high temperatures so that it is shining in the Xray region of the spectrum. In the Xray spectrum this gas cloud is comet shaped with two long tails stretching between the dense cores of the two clusters of galaxies. This distinctive configuration has allowed the researchers to establish the relative speed of the collision, which is extreme (~2200km/second), as it puts it at the limit of what is allowed by current theory for dark matter.

These rare, extreme examples of clusters caught in the act of colliding seem to be challenging the accepted view that dark matter is made up of heavy particles, since no such particles have actually been detected yet, despite the efforts being made to find them by means of the LHC (Large Hadron Particle Collider) accelerator in Geneva and the LUX (Large Underground Xenon Experiment), an underground dark matter detector in the United States.

In Tom Broadhurst's opinion, "it's all the more important to find a new model that will enable the mysterious dark matter to be understood better". Broadhurst is one of the authors of a wave-dark-matter model published in Nature Physics last year.

This new piece of research has entailed interpreting the gas observed and the dark matter of El Gordo "hydrodynamically" through the development of an in-house computational model that includes the dark matter, which comprises most of the mass, and which can be observed in the Xray region of the visible spectrum because of its extremely high temperature (100 million kelvin).

Dr Broadhurst and Dr Molnar have managed to obtain a unique computational solution for this collision because of the comet-like shape of the hot gas, and the locations and the masses of the two dark matter cores that have passed through each other at an oblique angle at a relative speed of about 2200 km/s. This means that the total energy release is bigger than that of any other known phenomenon, with the exception of the Big Bang.

###

About the author

Tom Broadhurst has a PhD in Physics from the University of Durham (United Kingdom). Until being recruited by Ikerbasque, he had done research at top research centres in the United Kingdom, United States, Germany, Israel, Japan and Taiwan. He has had 184 papers published in leading scientific journals, and so far his work has received 11,800 citations from other scientists. In 2010, he was recruited by Ikerbasque and since then has been carrying out his work at the UPV/EHU's department of Theoretical Physics. His lines of research focus on observational cosmology, dark matter and the formation of galaxies.

Reference: Molnar, SM and Broadhurst, T. Hydrodynamical Solution for the "Twin-Tailed" Colliding Galaxy Cluster "El Gordo" Astrophysical Journal, ApJ 800 37. doi:10.1088/0004-637X/800/1/37

Media Contact

Matxalen Sotillo
komunikazioa@ehu.eus
34-688-673-770

 @upvehu

http://www.ehu.es 

Matxalen Sotillo | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>