Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frequency combs for sniffing molecules

11.01.2013
Tiny crystalline resonators produce mid-infrared frequency combs for fingerprinting of molecules.

Most molecules, including those of importance in medical diagnostics or pollution monitoring, have characteristic “fingerprints” in the mid-infrared spectral region. However, state-of-the-art mid-infrared frequency comb techniques require systems that are often costly and limited in their applications.

In an article just published in Nature Communications (January 8th, 2013), scientists of the Laser Spectroscopy Division of the Max-Plank-Institute of Quantum Optics, in a collaboration with the Ecole Polytechnique de Lausanne (Switzerland), the Ludwig-Maximilians-Universität Munich, the Menlo Systems GmbH and the Institut des Sciences Moléculaires d’Orsay (France), have demonstrated the generation of mid-infrared frequency combs with small crystalline micro-resonators. Such miniaturized instruments, which can detect and characterize such molecules quickly and with high sensitivity, could revolutionize many areas of science and technology.

Optical frequency comb generators are coherent light sources, which produce a “comb” of many precisely evenly spaced spectral lines. During the last decade, such combs have revolutionized the art of measuring the frequency of light, as recognized in 2005 by the award of the Physics Nobel Prize to Prof. Theodor W. Hänsch. Today frequency combs are becoming enabling tools for new and unexpected applications. In particular, frequency combs are strongly impacting molecular spectroscopy by dramatically improving the recording speed, the resolution and the accuracy of Fourier spectrometers. The mid-infrared spectral range, also called molecular fingerprint region, is of primary importance to molecular physics. However, as reviewed in an article* published in the July 2012 issue of Nature Photonics, emerging mid-infrared frequency comb techniques still need considerable improvements: the systems are often based on nonlinear frequency conversion of near-infrared laser sources, which makes them bulky, and their use is limited to specialists.

The new technique developed by a team of scientists at MPQ avoids these obstacles. Here, mid-infrared frequency comb radiation is generated by exciting whispering gallery modes in a small toroidal monolithic resonator. A crystalline micro-resonator with a quality-factor exceeding 109 is pumped by a continuous-wave laser. By a nonlinear process called four-wave mixing, it produces a broad comb spectrum consisting of discrete lines spaced by 100 GHz at mid-infrared wavelengths near 2.5 µm. “The remarkable characteristics of such comb generators are their small size, large line-spacing, high power per comb line, and efficient conversion,” says Dr. Christine Wang, the post-doc who has performed the experiment. “An appropriate choice of the material – here magnesium fluoride – and proper engineering are crucial to realize broad spectral span and low-phase noise, as required for frequency comb operation.” Such miniaturized sources hold much promise for on-chip frequency-comb spectrometers. The spectrum of the fundamental vibrations of liquid phase samples might be measured within a few nanoseconds with a similar refresh time!

*A. Schliesser, N. Picqué, T.W. Hänsch, Mid-infrared frequency combs, Nature Photonics 6, 440-449 (2012)

Original publication:
C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picqué and T.J. Kippenberg
Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
Nature Communications 4, Article number: 1345, Issue of January 8th, 2013.
DOI: 10.1038/ncomms2335
Contact:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institute of Quantum Optics
Hans Kopfermann-Strasse 1
85748 Garching
Phone: +49 (0) 89 32905 -712
E-mail: t.w.haensch@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 32 905 -213
Fax: +49 (0) 89 32 905 -200
E-mail: olivia.meyer-streng@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institute of Quantum Optics & Centre National de la Recherche
Scientifique
Phone: +49 (0) 89 32905 -290
E-mail: nathalie.picque@mpq.mpg.de
Prof. Tobias J. Kippenberg
Ecole Polytechnique Fédérale de Lausanne
Laboratory of Photonics and Quantum Measurements
Lausanne, Switzerland
Email: tobias.kippenberg@epfl.ch

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>