Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer Develops New Generation of Lasers

04.07.2018

The Fraunhofer-Gesellschaft is launching a highly ambitious undertaking: the Fraunhofer Cluster of Excellence “ADVANCED PHOTON SOURCES”. The cluster aims to achieve international technological leadership in laser systems that reach maximum performance with ultrashort pulses (USP), as well as researching their potential applications, all in cooperation with Fraunhofer partners. The new systems are proposed to surpass all previous USP lasers by one order of magnitude in average laser power. At the same time, the partners are working on the required system technology as well as promising applications in industry and research.

The kick-off event on May 2, 2018 in Aachen marks the beginning of an extraordinary venture. Prof. Reinhart Poprawe, head of the Fraunhofer Institute for Laser Technology ILT, announced together with Prof. Andreas Tünnermann, head of the Fraunhofer Institute for Applied Optics and Precision Engineering IOF, the launch of the Fraunhofer Cluster of Excellence “ADVANCED PHOTON SOURCES”.


Coherently combined USP fiber lasers of the kW class, as they are made available in the user facility at Fraunhofer IOF.

© Fraunhofer IOF, Jena, Germany.


Partners of the Fraunhofer Cluster of Excellence “ADVANCED PHOTON SOURCES” met for the kick-off meeting on May 2, 2018 in Aachen.

© Fraunhofer ILT, Aachen, Germany / M. Conrad-Franzen.

“With twelve institutes, we are stepping up to the challenge of developing a new laser generation and demonstrating applications for industry and research. Together we target the development of a disruptive technology that will help expanding the applications for laser technology significantly – from the scaling of ultraprecise manufacturing processes to the development of new pulse duration and wavelength ranges for research,” said the director of the cluster, Prof. Poprawe.

What can USP lasers do?

Even at comparatively small pulse energies, USP lasers generate extremely high intensities in their focus. For a long time, they were only used in basic research. With the development of high-efficiency, high-performance pump diodes, new laser media could be used, in particular ytterbium-doped fibers and crystals. In recent years, USP lasers have achieved sufficient average laser power and robustness for enabling industrial applications.

For applications in micromachining, USP lasers have two major advantages: first, they can process virtually all materials; second, their ablation is particularly precise and, therefore, gentle since the ultrafast interaction hardly leaves any heat in the adjacent material. For these reasons, USP lasers were of interest to medical technologies from the beginning, e. g. for eye surgery using the Femto-Lasik technology.

“ADVANCED PHOTON SOURCES” user facility with two application laboratories will start in 2018

For cutting of ultra-hard ceramic materials and fiber-reinforced plastics, the performance of current 100 W class USP lasers is often insufficient in terms of economical processing speeds. Driven by the application potential in the industry and the need for basic research, the “ADVANCED PHOTON SOURCES” partners have set themselves the goal of increasing the average power of the USP sources at the Fraunhofer Institutes ILT and IOF up to the 10 kW range. With a budget of about 10 million euros for the first three years, the partners will develop and test beam sources for various applications.

In 2018, application laboratories will be set up at the two institutes. The development of system technology and innovative applications is enabled from an early stage. The Fraunhofer Cluster, which was founded at the beginning of the year, is open to all Fraunhofer Institutes. Currently twelve partners form the consortium: beside Fraunhofer ILT and IOF, the Fraunhofer Institutes FEP, IAF, IIS, IKTS, IMWS, ISE, ISIT, ITWM, IWM and IWS are involved.

The consortium aims at developing applications, investigating new processes and facilitating industrially relevant throughputs of well-known processes. Examples range from the micro-structuring and surface functionalization of solar cells, ultra-hard ceramics and battery components to the cutting of glass and lightweight materials.

In addition to achieving breakthroughs in ultraprecise manufacturing with high productivity, the partners also plan to generate coherent radiation down to the soft X-ray range – with photon fluxes two to three orders of magnitude higher than those previously reached. In the field of materials science, the Fraunhofer Cluster aims to establish applications such as the generation and investigation of novel materials. Moreover, new opportunities will arise for imaging biological samples or in the semiconductor field as well as for lithography.

The new lasers are also interesting for basic research: As an example, laser particle accelerators are more powerful, much smaller than conventional systems, and can even be integrated into existing laboratories. Furthermore, these so-called “secondary sources” can also significantly boost areas such as materials research and medical technology.

The synergies between the Fraunhofer Institutes enable the development of beam sources, process technology and innovative applications at a top international level. These can be made available for industry and research. As such high-power USP lasers become available, the research partners can revolutionize the innovation process in the technological environment of high-power lasers.

Contact

Dipl.-Ing. Hans-Dieter Hoffmann
Head of the Competence Area Laser and Optics
Telephone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen, Germany

Prof. Jens Limpert
Head of Department Fiber and Waveguide Lasers
Telephone +49 3641 947-811
jens.limpert@iof.fraunhofer.de
Fraunhofer Institute for Applied Optics and Precision Engineering IOF
Albert-Einstein-Str. 7
07745 Jena, Germany

Weitere Informationen:

http://www.ilt.fraunhofer.de/en
http://www.iof.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT IOF Lasertechnik USP ceramic materials lightweight materials

More articles from Physics and Astronomy:

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

nachricht First radio detection of an extrasolar planetary system around a main-sequence star
04.08.2020 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>