Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four new atomic nuclei discovered

09.09.2015

An international team of researchers at GSI Helmholtzzentrum für Schwerionenforschung has succeeded in discovering four new atomic nuclei. The exotic nuclei are one isotope each of the elements berkelium and neptunium and two isotopes of the element americium. The scientists used a new, highly sensitive method to create and detect the nuclei.

For the experiment, the scientists shot at a 300-nanometer-thick foil of curium with accelerated calcium nuclei. In the collisions studied, the atomic nuclei of the two elements touched, and formed a compound system for an extremely short time.


Final preparations: the head of the experiment, Dr. Sophia Heinz, of GSI and Devaraja Malligenahalli, a student from the Manipal Centre for Natural Sciences, working on the experiment’s electronics.

Copyright: G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

Before the compound system could break apart again, after about a sextillionth of a second, the two nuclei involved exchanged a number of their nuclear building-blocks — protons and neutrons. Different isotopes formed as the end products of this exchange.

The isotopes of berkelium, neptunium, and americium discovered in the GSI experiment were created as the end products of such collisions. They are unstable and decay after a few milliseconds or seconds, depending on the isotope. All of the resulting decay products can be separated and analyzed using special filters composed of electrical and magnetic fields. The scientists used all of the decay products detected to identify the new isotope that has been created.

Every chemical element comes in the form of different isotopes. These isotopes are distinguished from one another by the number of neutrons in the nucleus, and thus by their mass. The newly discovered isotopes have fewer neutrons and are lighter than the previously known isotopes of the respective elements.

Due to their low number of neutrons, their structure is very exotic and therefore interesting for the development of theoretical models describing atomic nuclei. To date, we know of around 3,000 isotopes of the 114 chemical elements of the periodic system. According to scientific estimates, more than 4,000 additional, undiscovered isotopes should also exist. The hunt for these unknown isotopes goes on at GSI. Atoms that are heavier than uranium are especially interesting in this hunt.

“By using this method, we have succeeded in generating many different atomic nuclei at once,” says Sophia Heinz, the head of the experiment. “Our results are especially important for the study of super-heavy elements. New isotopes, in particular those of super-heavy elements, which contain an especially large number of neutrons, cannot be made by any other method. Experiments aimed at creating these neutron-rich nuclei are already being prepared.”

The current experiments will make it possible to explore previously unknown areas on the isotope chart. The elements 107 to 112 were discovered using the same experimental facility at GSI. The mechanisms responsible for the production of new isotopes will also be studied at the planned accelerator center FAIR in the future.

By the discovery of the four new isotopes, on the ranking list GSI moves closer to the laboratory which discovered the most isotopes. Head of the ranking list at the moment is the Lawrence Berkeley National Laboratory in the USA. GSI is on the second place.

The experiment at the GSI accelerator facility was carried out by an international team of researchers. Participants included the GSI Helmholtzzentrum für Schwerionenforschung, scientists from the Manipal Centre for Natural Sciences in India, the Justus Liebig University Giessen, the Japan Atomic Energy Agency, Lawrence Livermore National Laboratory in the USA, and the Joint Institute for Nuclear Research in Russia.

Weitere Informationen:

https://www.gsi.de/en/start/news/detailseite/2015/08/31/four-new-atomic-nuclei-d...

Dr. Ingo Peter | GSI Helmholtzzentrum für Schwerionenforschung GmbH

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>