Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four new atomic nuclei discovered

09.09.2015

An international team of researchers at GSI Helmholtzzentrum für Schwerionenforschung has succeeded in discovering four new atomic nuclei. The exotic nuclei are one isotope each of the elements berkelium and neptunium and two isotopes of the element americium. The scientists used a new, highly sensitive method to create and detect the nuclei.

For the experiment, the scientists shot at a 300-nanometer-thick foil of curium with accelerated calcium nuclei. In the collisions studied, the atomic nuclei of the two elements touched, and formed a compound system for an extremely short time.


Final preparations: the head of the experiment, Dr. Sophia Heinz, of GSI and Devaraja Malligenahalli, a student from the Manipal Centre for Natural Sciences, working on the experiment’s electronics.

Copyright: G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

Before the compound system could break apart again, after about a sextillionth of a second, the two nuclei involved exchanged a number of their nuclear building-blocks — protons and neutrons. Different isotopes formed as the end products of this exchange.

The isotopes of berkelium, neptunium, and americium discovered in the GSI experiment were created as the end products of such collisions. They are unstable and decay after a few milliseconds or seconds, depending on the isotope. All of the resulting decay products can be separated and analyzed using special filters composed of electrical and magnetic fields. The scientists used all of the decay products detected to identify the new isotope that has been created.

Every chemical element comes in the form of different isotopes. These isotopes are distinguished from one another by the number of neutrons in the nucleus, and thus by their mass. The newly discovered isotopes have fewer neutrons and are lighter than the previously known isotopes of the respective elements.

Due to their low number of neutrons, their structure is very exotic and therefore interesting for the development of theoretical models describing atomic nuclei. To date, we know of around 3,000 isotopes of the 114 chemical elements of the periodic system. According to scientific estimates, more than 4,000 additional, undiscovered isotopes should also exist. The hunt for these unknown isotopes goes on at GSI. Atoms that are heavier than uranium are especially interesting in this hunt.

“By using this method, we have succeeded in generating many different atomic nuclei at once,” says Sophia Heinz, the head of the experiment. “Our results are especially important for the study of super-heavy elements. New isotopes, in particular those of super-heavy elements, which contain an especially large number of neutrons, cannot be made by any other method. Experiments aimed at creating these neutron-rich nuclei are already being prepared.”

The current experiments will make it possible to explore previously unknown areas on the isotope chart. The elements 107 to 112 were discovered using the same experimental facility at GSI. The mechanisms responsible for the production of new isotopes will also be studied at the planned accelerator center FAIR in the future.

By the discovery of the four new isotopes, on the ranking list GSI moves closer to the laboratory which discovered the most isotopes. Head of the ranking list at the moment is the Lawrence Berkeley National Laboratory in the USA. GSI is on the second place.

The experiment at the GSI accelerator facility was carried out by an international team of researchers. Participants included the GSI Helmholtzzentrum für Schwerionenforschung, scientists from the Manipal Centre for Natural Sciences in India, the Justus Liebig University Giessen, the Japan Atomic Energy Agency, Lawrence Livermore National Laboratory in the USA, and the Joint Institute for Nuclear Research in Russia.

Weitere Informationen:

https://www.gsi.de/en/start/news/detailseite/2015/08/31/four-new-atomic-nuclei-d...

Dr. Ingo Peter | GSI Helmholtzzentrum für Schwerionenforschung GmbH

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>