Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forecast calls for nanoflowers to help return eyesight

06.05.2011
University of Oregon physicist Richard Taylor is leading effort to design fractal devices to put in eyes

University of Oregon researcher Richard Taylor is on a quest to grow flowers that will help people who've lost their sight, such as those suffering from macular degeneration, to see again.

These flowers are not roses, tulips or columbines. They will be nanoflowers seeded from nano-sized particles of metals that grow, or self assemble, in a natural process -- diffusion limited aggregation. They will be fractals that mimic and communicate efficiently with neurons.

Fractals are "a trademark building block of nature," Taylor says. Fractals are objects with irregular curves or shapes, of which any one component seen under magnification is also the same shape. In math, that property is self-similarity. Trees, clouds, rivers, galaxies, lungs and neurons are fractals, Taylor says. Today's commercial electronic chips are not fractals, he adds.

Eye surgeons would implant these fractal devices within the eyes of blind patients, providing interface circuitry that would collect light captured by the retina and guide it with almost 100 percent efficiency to neurons for relay to the optic nerve to process vision.

In an article titled "Vision of beauty" for Physics World, Taylor, a physicist and director of the UO Materials Science Institute, describes his envisioned approach and how it might overcome the problems occurring with current efforts to insert photodiodes behind the eyes. Current chip technology is limited, because it doesn't allow sufficient connections with neurons.

"The wiring -- the neurons -- in the retina is fractal, but the chips are not fractal," Taylor says. "They are just little squares of electrodes that provide too little overlap with the neurons."

Beginning this summer, Taylor's doctoral student Rick Montgomery will begin a yearlong collaboration with Simon Brown at the University of Canterbury in New Zealand to experiment with various metals to grow the fractal flowers on implantable chips.

The idea for the project emerged as Taylor was working under a Cottrell Scholar Award he received in 2003 from the Research Corporation for Science Advancement. His vision is now beginning to blossom under grants from the Office of Naval Research (ONR), the U.S. Air Force and the National Science Foundation.

Taylor's theoretical concept for fractal-based photodiodes also is the focus of a U.S. patent application filed by the UO's Office of Technology Transfer under Taylor's and Brown's names, the UO and University of Canterbury.

The project, he writes in the Physics World article, is based on "the striking similarities between the eye and the digital camera." (Physics World article is available at: http://physicsworld.com/cws/article/indepth/45840)

"The front end of both systems," he writes, "consists of an adjustable aperture within a compound lens, and advances bring these similarities closer each year." Digital cameras, he adds, are approaching the capacity to capture the 127 megapixels of the human eye, but current chip-based implants, because of their interface, are only providing about 50 pixels of resolution.

Among the challenges, Taylor says, is determining which metals can best go into body without toxicity problems. "We're right at the start of this amazing voyage," Taylor says. "The ultimate thrill for me will be to go to a blind person and say, we're developing a chip that one day will help you see again. For me, that is very different from my previous research, where I've been looking at electronics to go into computers, to actually help somebody … if I can pull that off that will be a tremendous thrill for me."

Taylor also is working under a Research Corp. grant to pursue fractal-based solar cells.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Contact: Jim Barlow, director of science and research communications, 541-346-3481, jebarlow@uoregon.edu

Source: Richard Taylor, professor of physics, director of Materials Science Institute, 541-346-4741, rpt@uoregon.edu

Links:
Physics World article: http://physicsworld.com/cws/article/indepth/45840
Taylor faculty page: http://physics.uoregon.edu/faculty/taylor.html
Physics department: http://physics.uoregon.edu/index.html
Materials Science Institute: http://materialscience.uoregon.edu/
UO Office of Technology Transfer: http://techtran.uoregon.edu/
Simon Brown faculty page: http://www.phys.canterbury.ac.nz/people/brown.shtml
Audio Clip with Taylor: http://comm.uoregon.edu/files/pmr/uploads/The_Vision.mp3
Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>