Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatland light

07.11.2019

Researchers create rewritable optical components for 2D light waves

In 1884, a schoolmaster and theologian named Edwin Abbott wrote a novella called Flatland, which tells the story of a world populated by sentient two-dimensional shapes. While intended as a satire of rigid Victorian social norms, Flatland has long fascinated mathematicians and physicists and served as the setting for many a thought experiment.


A 2D prism

Credit: Harvard SEAS


A 2D lens

Credit: Harvard SEAS

One such thought experiment: How can light be controlled in two dimensions?

When a wave of light is confined on a two-dimensional plane by certain materials, it becomes something known as a polariton -- a particle that blurs the distinction between light and matter. Polaritons have exciting implications for the future of optical circuits because, unlike electronic integrated circuits, integrated optics is difficult to miniaturize with commonly used materials. Polaritons allow light to be tightly confined to the nanoscale, even potentially to the thickness of a few atoms.

The challenge is, all of the ways we currently have to control light - lenses, waveguides, prisms -- are three dimensional.

"The ability to control and confine light with fully reprogrammable optical circuits is vital for future highly-integrated nanophotonic devices," said Michele Tamagnone, a postdoctoral fellow in Applied Physics at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).

Now, Tamagnone and a team of researchers at SEAS have developed rewritable optical components for surface light waves. The research was published in Nature Communications.

In previous research, the team, led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, demonstrated a technique to create and control polaritons by trapping light in a flake of hexagonal boron nitride. In this study, the researchers put those flakes on the surface of a material known as GeSbTe (GST) -- the same materials used on the surface of rewritable CDs and Blu-ray discs.

"The rewritable property of GST using simple laser pulses allows for the recording, erasing and rewriting of information bits. Using that principle, we created lenses, prisms and waveguides by directly writing them into the material layer," said Xinghui Yin, a postdoctoral fellow at SEAS and co-first author of the study.

The lenses and prisms on this material are not three-dimensional objects as in our world, but rather two-dimensional shapes, as they would be in Flatland. Instead of having a semispherical lens, the polaritons on the Flatland-esc material pass through a flat semicircle of refracting material that act as a lens. Instead of traveling through a prism, they travel through a triangle and instead of optical fibers, the polaritons move through a simple line, which guides the waves along a predefined path.

Using a technique known as near-field microscopy, which allows the imaging of features much smaller than the wavelength of light, the researchers were able to see these components at work. They also demonstrated for the first time that it is possible to erase and rewrite the optical components that they created.

"This research could lead to new chips for applications such as single molecule chemical sensing, since the polaritons in our rewritable devices correspond to frequencies in the region of spectrum where molecules have their telltale absorption fingerprints," said Capasso.

###

This research was co-first-authored by Kundan Chaudhary and Christina M. Spägele and co-authored by Stefano L. Oscurato, Jiahan Li, Christoph Persch, Ruoping Li, Noah A. Rubin, Luis A. Jauregui, Kenji Watanabe, Takashi Taniguchi, Philip Kim, Matthias Wuttig, James H. Edgar, and Antonio Ambrosio.

It was supported by the National Science Foundation.

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!
Further information:
https://www.seas.harvard.edu/news/2019/11/flatland-light
http://dx.doi.org/10.1038/s41467-019-12439-4

More articles from Physics and Astronomy:

nachricht HKU astronomy research team unveils one origin of globular clusters around giant galaxies
06.11.2019 | The University of Hong Kong

nachricht Ultrafast quantum motion in a nanoscale trap detected
06.11.2019 | The Korea Advanced Institute of Science and Technology (KAIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Oxygen deficiency rewires mitochondria

07.11.2019 | Life Sciences

What and how much we eat might change our internal clocks and hormone responses

07.11.2019 | Studies and Analyses

Scientists crack structure of a novel enzyme linked to cell growth and cancer

06.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>