Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes on the Moon

31.05.2019

On the moon flashes and other enigmatic light phenomena can be observed again and again. With a new telescope, a professor at the University of Würzburg wants to get to the bottom of these phenomena.

It happens several times a week. Sometimes it is only short flashes of light that appear on the surface of the moon. Other light phenomena on the Earth's satellite can last longer. And sometimes there are also places that darken temporarily.


Professor Hakan Kayal next to the moon telescope.

Photo: Tobias Greiner


The observatory in Spain. The Würzburg moon telescope stands in one of the containers.

Picture: Hakan Kayal

Science does not know exactly how these phenomena occur on the moon. But it has attempts to explain them: the impact of a meteor, for example, should cause a brief glow. Such flashes could also occur when electrically charged particles of the solar wind react with moon dust.

"Seismic activities were also observed on the moon. When the surface moves, gases that reflect sunlight could escape from the interior of the moon. This would explain the luminous phenomena, some of which last for hours," says Hakan Kayal, Professor of Space Technology at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany.

Moon telescope set up in Spain

Kayal is most interested in these appearances. "The so-called transient lunar phenomena have been known since the 1950s, but they have not been sufficiently systematically and long-term observed. This is currently changing, and the JMU professor wants to make his contribution.

As a first step, Kayal's team built a lunar telescope and put it into operation in April 2019. It is located in a private observatory in Spain, about 100 kilometres north of Seville in a rural area. Why Spain? "There are simply better weather conditions for observing the moon than in Germany," says Kayal.

The telescope is remote-controlled from the JMU campus. It consists of two cameras that keep an eye on the moon night after night. Only if both cameras register a luminous phenomenon at the same time, the telescope triggers further actions. It then stores photos and video sequences of the event and sends an e-mail message to Kayal's team.

Filing the intelligent software

The system is not yet completely finished – the software, which automatically and reliably detects flashes and other light phenomena, is being further refined. Kayal plans to use artificial intelligence methods, among other things: neuronal networks ensure that the system gradually learns to distinguish a moon flash from technical faults or from objects such as birds and airplanes passing in front of the camera. It is estimated that another year of work will be required before this can be done.

For Kayal, reducing the false alarm rate as much as possible is only the first milestone in this project. The system, which he is developing on Spanish soil, will later be used on a satellite mission. The cameras could then work in orbit around the earth or the moon. The professor hopes that this will lead to much better results: "We will then be rid of the disturbances caused by the atmosphere".

What happens once the telescope has documented a luminous phenomenon? Kayal's team would then compare the result with the European Space Agency ESA, which also observes the moon. "If the same thing was seen there, the event can be considered confirmed." If necessary, further joint research could then be initiated.

New race to the moon

Interest in the lunar luminous phenomena is currently high. This is also due to a new "race to the moon" that is underway: China has started a comprehensive lunar program and at the beginning of January 2019 launched a probe on the far side of the moon. India is planning a similar mission. As a reaction to these initiatives US President Donald Trump spoke in May of a return of the USA to the moon and announced that he wanted to lead NASA back "to its old size".

Behind all these activities are prestige reasons and a striving for technological “supremacy" in space. China and other players such as Space X, however, are also considering the moon as a habitat for humans in the long term. In addition, there are raw materials on the moon – for example, rare metals that are needed for smartphones and other devices.

"Anyone who wants to build a lunar base at some point must of course be familiar with the local conditions," says Professor Kayal. What if such plans should ever become concrete? By then at the latest, it should be clear what the mysterious flashes and luminous phenomena are all about.

Study programs at JMU

JMU students are also involved in the study of lunar phenomena. For example, they can write bachelor's or master's theses on the topic. At the University of Würzburg there is a Bachelor's programme in “Aviation and Space Computer Science”, taught in german. The Master's programme "Satellite Technology", which is taught in English, fits in well with this. In addition, you can choose to specialize in Aviation and Space Technology in the Master's programme in Computer Science.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hakan Kayal, Space Technology, University of Würzburg, T +49 931 31-86649, hakan.kayal@uni-wuerzburg.de

Weitere Informationen:

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/ Website Prof. Hakan Kayal

https://www.uni-wuerzburg.de/satec/home/ JMU program Master’s in Satellite Technology

https://www.uni-wuerzburg.de/international/studieren-in-wuerzburg/studium-mit-ab... JMU degree programs in english language

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>