Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes on the Moon

31.05.2019

On the moon flashes and other enigmatic light phenomena can be observed again and again. With a new telescope, a professor at the University of Würzburg wants to get to the bottom of these phenomena.

It happens several times a week. Sometimes it is only short flashes of light that appear on the surface of the moon. Other light phenomena on the Earth's satellite can last longer. And sometimes there are also places that darken temporarily.


Professor Hakan Kayal next to the moon telescope.

Photo: Tobias Greiner


The observatory in Spain. The Würzburg moon telescope stands in one of the containers.

Picture: Hakan Kayal

Science does not know exactly how these phenomena occur on the moon. But it has attempts to explain them: the impact of a meteor, for example, should cause a brief glow. Such flashes could also occur when electrically charged particles of the solar wind react with moon dust.

"Seismic activities were also observed on the moon. When the surface moves, gases that reflect sunlight could escape from the interior of the moon. This would explain the luminous phenomena, some of which last for hours," says Hakan Kayal, Professor of Space Technology at Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany.

Moon telescope set up in Spain

Kayal is most interested in these appearances. "The so-called transient lunar phenomena have been known since the 1950s, but they have not been sufficiently systematically and long-term observed. This is currently changing, and the JMU professor wants to make his contribution.

As a first step, Kayal's team built a lunar telescope and put it into operation in April 2019. It is located in a private observatory in Spain, about 100 kilometres north of Seville in a rural area. Why Spain? "There are simply better weather conditions for observing the moon than in Germany," says Kayal.

The telescope is remote-controlled from the JMU campus. It consists of two cameras that keep an eye on the moon night after night. Only if both cameras register a luminous phenomenon at the same time, the telescope triggers further actions. It then stores photos and video sequences of the event and sends an e-mail message to Kayal's team.

Filing the intelligent software

The system is not yet completely finished – the software, which automatically and reliably detects flashes and other light phenomena, is being further refined. Kayal plans to use artificial intelligence methods, among other things: neuronal networks ensure that the system gradually learns to distinguish a moon flash from technical faults or from objects such as birds and airplanes passing in front of the camera. It is estimated that another year of work will be required before this can be done.

For Kayal, reducing the false alarm rate as much as possible is only the first milestone in this project. The system, which he is developing on Spanish soil, will later be used on a satellite mission. The cameras could then work in orbit around the earth or the moon. The professor hopes that this will lead to much better results: "We will then be rid of the disturbances caused by the atmosphere".

What happens once the telescope has documented a luminous phenomenon? Kayal's team would then compare the result with the European Space Agency ESA, which also observes the moon. "If the same thing was seen there, the event can be considered confirmed." If necessary, further joint research could then be initiated.

New race to the moon

Interest in the lunar luminous phenomena is currently high. This is also due to a new "race to the moon" that is underway: China has started a comprehensive lunar program and at the beginning of January 2019 launched a probe on the far side of the moon. India is planning a similar mission. As a reaction to these initiatives US President Donald Trump spoke in May of a return of the USA to the moon and announced that he wanted to lead NASA back "to its old size".

Behind all these activities are prestige reasons and a striving for technological “supremacy" in space. China and other players such as Space X, however, are also considering the moon as a habitat for humans in the long term. In addition, there are raw materials on the moon – for example, rare metals that are needed for smartphones and other devices.

"Anyone who wants to build a lunar base at some point must of course be familiar with the local conditions," says Professor Kayal. What if such plans should ever become concrete? By then at the latest, it should be clear what the mysterious flashes and luminous phenomena are all about.

Study programs at JMU

JMU students are also involved in the study of lunar phenomena. For example, they can write bachelor's or master's theses on the topic. At the University of Würzburg there is a Bachelor's programme in “Aviation and Space Computer Science”, taught in german. The Master's programme "Satellite Technology", which is taught in English, fits in well with this. In addition, you can choose to specialize in Aviation and Space Technology in the Master's programme in Computer Science.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hakan Kayal, Space Technology, University of Würzburg, T +49 931 31-86649, hakan.kayal@uni-wuerzburg.de

Weitere Informationen:

http://www8.informatik.uni-wuerzburg.de/mitarbeiter/kayal0/ Website Prof. Hakan Kayal

https://www.uni-wuerzburg.de/satec/home/ JMU program Master’s in Satellite Technology

https://www.uni-wuerzburg.de/international/studieren-in-wuerzburg/studium-mit-ab... JMU degree programs in english language

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>