Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First observation of the hyperfine splitting in antihydrogen

04.08.2017

Swansea University scientists working at CERN have again made a landmark finding

Swansea University scientists working at CERN have again made a landmark finding, taking them one step closer to answering the question of why matter exists and illuminating the mysteries of the Big Bang and the birth of the Universe.


Antimatter research laboratory.

Credit: Professor Niels Madsern

In their paper published in Nature the physicists from the University's College of Science, working with an international collaborative team at CERN, describe the first observation of spectral line shapes in antihydrogen, the antimatter equivalent of hydrogen.

Professor Mike Charlton said: "The existence of antimatter is well established in physics, and it is buried deep in the heart of some of the most successful theories ever developed. But we have yet to answer a central question of why didn't matter and antimatter, which it is believed were created in equal amounts when the Big Bang started the Universe, mutually self-annihilate?

"We also have yet to address why there is any matter left in the Universe at all. This conundrum is one of the central open questions in fundamental science, and one way to search for the answer is to bring the power of precision atomic physics to bear upon antimatter."

It has long been established that any excited atom will reach its lowest state by emitting photons, and the spectrum of light and microwaves emitted from them represents a kind of atomic fingerprint and it is a unique identifier. The most familiar everyday example is the orange of the sodium streetlights.

Hydrogen has its own spectrum and, as the simplest and most abundant atom in the Universe, it holds a special place in physics. The properties of the hydrogen atom are known with high accuracy. The one looked at in this paper concerns the so-called hyperfine splitting, which in the case of hydrogen has been determined with a precision of one part in ten trillion. This transition is used these days in modern navigation and geo-positioning.

The team have made antihydrogen by replacing the proton nucleus of the ordinary atom by an antiproton, while the electron has been substituted by a positron. Last year, in ground-breaking work published in Nature, the team used UV light to detect the so-called 1S-2S transition between positron energy levels. Now, the team has used microwaves to flip the spin of the positron. This resulted not only in the first precise determination of the antihydrogen hyperfine splitting, but also the first antimatter transition line shape, a plot of the spin flip probability versus the microwave frequency. If there is a difference between matter and antimatter, it could be found in tiny differences between this line shape in hydrogen and antihydrogen.

The Swansea team are:

Academic: Professor Mike Charlton, Dr Stefan Eriksson, Dr Aled Isaac, Professor Niels Madsen, Professor Dirk Peter van der Werf
Research Fellows: Dr Christopher Baker and Dr Dan Maxwell
Post-Graduate students: Steven Armstrong Jones and Muhammed Sameed

Media Contact

Delyth Purchase
d.purchase@swansea.ac.uk
44-017-925-13022

 @swanseauni

http://www.swansea.ac.uk/ 

Delyth Purchase | EurekAlert!

Further reports about: Big Bang CERN Swansea UV light atomic physics energy levels hydrogen atom microwaves

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>