Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First look at Jupiter's poles show strange geometric arrays of storms

08.03.2018

Jupiter's got no sway. The biggest planet in the solar system has no tilt as it moves, so its poles have never been visible from Earth.

But in the past two years, with NASA's Juno spacecraft, scientists have gotten a good look at the top and bottom of the planet for the first time. What they found astounded them: bizarre geometric arrangements of storms, each arrayed around one cyclone over the north and south poles--unlike any storm formation seen in the universe.


Five massive storms form a pentagon around a storm at the center of Jupiter's south pole-the first look we've ever gotten at the gas giant's poles, and a scientific mystery.

Credit: NASA/SWRI/JPL/ASI/INAF/IAPS

The study, authored by scientists from an international group of institutions including the University of Chicago, is published in March 8's Nature as part of a set of four papers dedicated to new observations from the Juno spacecraft.

Juno launched in 2011 with the ambitious mission of finally seeing beneath the dense clouds covering Jupiter. On July 4, 2016, it finally reached the planet's orbit. Since then it's been orbiting the planet, taking pictures and measuring the planet's profile in infrared, microwave, ultraviolet, gravity and magnetism--and answering questions scientists have had about Jupiter for decades.

One of these was the question of what lay at its elusive poles. When scientists got the first images, they were stunned. At the north pole, eight storms surrounded one storm at the center. At the south pole, it was the same arrangement, only with five storms. But the numbers stayed oddly constant; the storms weren't drifting and merging, as our current understanding of the science suggested they should.

"They are extraordinarily stable arrangements of such chaotic elements," said Morgan O'Neill, a University of Chicago postdoctoral scholar and a co-author on the paper. "We'd never seen anything like it."

The geometry rang a faint bell in O'Neill's mind, though. She found it in the library of strange physical phenomena only observed under special conditions in the laboratory. In the 1990s, scientists observed a similar behavior as they used electrons to simulate a frictionless, turbulent 2-D fluid as it cools. Instead of merging, which tends to happen in such 2-D flows, small vortices would clump together and form equally spaced arrays, or "vortex crystals," around a center.

It's not yet clear whether the same physics underlies both these behaviors, O'Neill said, but it is tantalizing. "The next step is: Can you create a model that builds a virtual planet and predicts these flows?" she said. With further studies, they can understand the forces at play in the swirling storms.

A greater understanding of the physics behind the flows and dynamics of storms is helpful on every planet; though O'Neill did her PhD on the dynamics of cyclones on gas giants (including a prediction that Jupiter's poles would not look like Saturn's: "I got it...partially right," she said), she now uses similar storm modeling to study hurricanes on Earth.

###

The study was led by Alberto Adriani with Rome's Institute for Space Astrophysics and Planetology. Other authors on the study were from the Jet Propulsion Laboratory, Caltech, the British Astronomical Association, the Southwest Research Institute, NASA Goddard Space Flight Center, the University of Michigan, Cornell University, the University of Atacama in Chile and the Planetary Science Institute, as well as the Institute for Space Astrophysics and Planetology, the University of Bologna, the Italian Space Agency and the Institute of Atmospheric Sciences and Climate, all in Italy.

Media Contact

Louise Lerner
louise@uchicago.edu
773-702-8366

 @UChicago

http://www-news.uchicago.edu

Louise Lerner | EurekAlert!

More articles from Physics and Astronomy:

nachricht Quantum gas turns supersolid
23.04.2019 | Universität Innsbruck

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>