Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017

Astronomers publish predictions of planetary phenomena on Jupiter that informed spacecraft's arrival

New observations about the extreme conditions of Jupiter's weather and magnetic fields by University of Leicester astronomers have contributed to the revelations and insights coming from the first close passes of Jupiter by NASA's Juno mission, announced today (25 May).


This image combines an image taken with Hubble Space Telescope in the optical (taken in spring 2014) and observations of its auroras in the ultraviolet, taken in 2016.

Credit: NASA, ESA and J. Nichols (University of Leicester)

The astronomers from the University's Department of Physics and Astronomy, led by the UK science lead for the Juno mission, have led three papers and contributed to four papers in Geophysical Research Letters, a journal of the American Geophysical Union, that support the first in-depth science results from Juno published in the journal Science.

Juno made its first scientific close-up, known as a 'perijove', on 27 August last year. Lasting a few hours, the spacecraft flies from the north pole to the south pole, dipping within 4000 km of the equatorial clouds and beneath Jupiter's most intense and damaging radiation belts.

The Juno team organized a campaign with astronomers using Earth- and space-based telescopes around the globe to collaborate with the Juno science team. These collaborations provide the Juno science team with a 'forecast' of the gas giant's intense weather systems and powerful aurorae to compare with Juno close observations.

The results from Juno have proven Jupiter to be an even more extreme and surprising environment than the scientists predicted.

A model of the workings of Jupiter's polar aurorae (northern lights) was detailed by Professor Stan Cowley, Professor of Solar Planetary Physics at University of Leicester and the UK science lead for Juno, with colleagues at the University of Leicester. This model, based upon spacecraft flybys and Galileo orbiter observations, details the electric currents which couple the polar upper atmosphere to the planetary field and plasma at large distances, and offers a comparison of Juno's early data with a prediction of what Juno would observe on its first 'perijove'.

Professor Cowley, who is a co-author on the Science paper, said: "Our new paper in the Juno special issue of Geophysical Research Letters makes detailed predictions about what should be seen, and when, on Juno's first perijove pass, and we plan to continue this work for subsequent passes as well. Our prediction is being published alongside the early Juno data. We look forward to future release of the fully calibrated Juno data that will allow these predictions to be tested in detail."

Dr Jonathan Nichols, Reader in Planetary Auroras at University of Leicester, was also involved in monitoring Jupiter's polar aurorae during Juno's approach to Jupiter. He led on observations of the impact of the solar wind on the auroras using the Hubble Space Telescope, for the first time confirming the impact of the solar wind on auroras on Jupiter - and capturing the most powerful auroras observed by Hubble to date.

Dr Nichols said: "Jupiter threw an auroral firework party to celebrate Juno's arrival. We have been able to show that intense pulses of aurora were triggered during intervals when the solar wind was buffeting the giant magnetosphere. This tells us that even Jupiter's mighty magnetosphere is, like those of Earth and Saturn, not immune to the vagaries of the Sun and the solar wind."

Dr Leigh Fletcher, Royal Society Research Fellow at University of Leicester, has led Earth-based observations of Jupiter's atmospheric weather systems which take the form of dark and light banding of colour as seen from Earth. Closer inspection using the Very Large Telescope in Chile, the Subaru Telescope in Hawaii, and NASA's Infrared Telescope Facility (IRTF) reveals that this banding is constantly changing over long spans of time. Juno is starting to reveal the deep processes driving these changes from below the clouds.

Dr Fletcher said: "Juno's data shows that Jupiter exhibits banding all the way down to ~350km, much deeper than what we've generally thought of as Jupiter's 'weather layer' in the upper few tens of kilometres. Deep sounding down through the clouds for the first time has revealed an enormous circulation pattern with a column of rising equatorial gas, suggesting that those cloud-top colours really are just the tip of the iceberg. This is much deeper than we can see with Earth- or space-based telescopes.

"The presence of the Juno spacecraft in orbit around Jupiter is providing us with an unprecedented opportunity to combine remote observations with in situ studies of the jovian environment, a chance that won't come again for at least a decade. Already, Juno's discoveries are forcing us to re-evaluate some long-standing ideas about how this giant planet system works."

Juno launched on 5 Aug 2011, from Cape Canaveral Air Force Station, Florida, and arrived in orbit around Jupiter on 4 July 2016. In its current exploration mission, Juno soars low over the planet's cloud tops, as close as about 2,100 miles (3,400 kilometers). During these flybys, Juno probes beneath the obscuring cloud cover of Jupiter and studies its auroras to learn more about the planet's origins, structure, atmosphere and magnetosphere.

The University of Leicester is home to the UK science lead for the Juno mission, NASA's programme to study our solar system's largest planet, Jupiter. Planetary scientists and astronomers from the Department of Physics and Astronomy are studying the gas giant's magnetosphere, dynamic atmosphere and its beautiful polar auroras.

###

Notes to editors:

For more information contact:

Dr Leigh Fletcher
Royal Society Research Fellow (URF)
Email: leigh.fletcher@le.ac.uk

Dr Jonathan Nichols (unavailable on Thursday 25 May)
Reader in Planetary Auroras
jdn4@le.ac.uk

Journal references:

Cowley, S.W.H., G. Provan, E.J. Bunce, and J.D. Nichols, Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady-state axisymmetric physical model, Geophys. Res. Lett., in press, doi: 10.1002/2017GL073129, 2017.

Nichols, J.D., S.V. Badman, F. Bagenal, S.J. Bolton, B. Bonfond, E.J. Bunce, J.T. Clarke, J.E.P. Connerney, S.W.H. Cowley, R.W. Ebert, M. Fujimoto, J. C. Gérard, G.R. Gladstone, D. Grodent, T. Kimura, W.S. Kurth, B.H. Mauk, G. Murakami, D.J. McComas, G.S. Orton, A. Radioti, T.S. Stallard, C. Tao, P.W. Valek, R.J. Wilson, A. Yamazaki, and I. Yoshikawa, Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno, Geophys. Res. Lett., in press, doi: 10.1002/2017GL073029,2017.

L.N. Fletcher, (2017), Cycles of Activity in the Jovian Atmosphere, Geophys. Res. Lett, in press.

L.N. Fletcher, G.S. Orton, J.A. Sinclair, P. Donnelly, H. Melin, J.H. Rogers, T.K. Greathouse, Y. Kasaba, T. Fujiyoshi, T.M. Sato, J. Fernandes, P.G.J. Irwin, R.S. Giles, A.A Simon, M.H. Wong, M. Vedovato (2017), Jupiter's North Equatorial Belt expansion and thermal wave activity ahead of Juno's arrival, Geophys. Res. Lett., 44, 1-9

Moore, L., O'Donoghue, J., Melin, H., Stallard, T., Tao, C., Zieger, B., Clarke, J., Vogt, M. F., Bhakyapaibul, T., Opher, M., Tóth, G., Connerney, J. E. P., Levin, S., and Bolton, S., Variability of Jupiter's IR H3+ aurorae during Juno approach, Geophys. Res. Lett., in press

G. R. Gladstone, M. H. Versteeg, T. K. Greathouse, V. Hue, M. W. Davis, J.-C. Gérard, D. Grodent, B. Bonfond, J. D. Nichols, R. J. Wilson, G. B. Hospodarsky, S. J. Bolton, S. M. Levin, J. E. P. Connerney, A. Adriani, W. S. Kurth, B. H. Mauk, P. Valek, D. J. McComas, G. S. Orton, and F. Bagenal, Juno-UVS Approach Observations of Jupiter's Auroras, 10.1002/2017GL073377

T. Kimura, J. D. Nichols, R. L. Gray, C. Tao, G. Murakami, A. Yamazaki, S. V. Badman, F. Tsuchiya, K. Yoshioka, H. Kita, D. Grodent, G. Clark, I. Yoshikawa, and M. Fujimoto, Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft, 10.1002/2017GL072912

Connerney, J.E.P., A. Adriani, F. Allegrini, F. Bagenal, S.J. Bolton, B. Bonfond, S.W.H. Cowley, J. C. Gérard, G.R. Gladstone, D. Grodent, G. Hospodarsky, J. Jorgensen, W. Kurth, S.M. Levin, B. Mauk, D.J. McComas, A. Mura, C. Paranicas, E.J. Smith, R.M. Thorne, P. Valek, and J. Waite, Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits, Science, in press, 2017.

Media Contact

Dr. Leigh Fletcher
leigh.fletcher@le.ac.uk
44-011-625-23585

 @UoLNewsCentre

http://www.leicester.ac.uk 

Dr. Leigh Fletcher | EurekAlert!

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>