Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First European XFEL research results published

28.08.2018

Just days before the first anniversary of the start of European XFEL user operation, the first results based on research performed at the facility have been published. In the journal Nature Communications, the scientists, headed by Prof. Ilme Schlichting from Max-Planck-Institute for Medical Research in Heidelberg, Germany, together with colleagues from Rutgers State University of New Jersey in the USA, France, DESY and European XFEL, describe their work using the intense X-ray laser beam to determine the 3D structure of several proteins.

They demonstrate, for the first time that, under the conditions used at the time of the experiment, an increased number of X-ray pulses per second as produced by the European XFEL can be successfully used to determine the structure of biomolecules.


The SPB/SFX instrument at European XFEL.

Copyright: European XFEL

As much faster data collection is therefore possible, the time needed for an experiment could be significantly shortened. The detailed determination of the 3D structure of biomolecules is crucial for providing insights into informing the development of novel drugs to treat diseases.

Prof. Ilme Schlichting said: “Our work shows that under the conditions used, data can be collected at European XFEL at a rate much faster than has ever been previously possible. As the time and cost of experiments decrease, very soon many more researchers will be able to perform experiments at high repetition rate X-ray lasers. Our results are therefore of interest not only for the fields of biology and medicine, but also physics, chemistry and other disciplines.”

Prof. Robert Feidenhans’l, managing director of European XFEL: “This fantastic result, published just weeks after the experiment itself, is a reflection of the hard work of many dedicated people. Our users as well as our staff at European XFEL, DESY and our collaborators have all ensured that everything from designing and setting up the experiment, through to data collection and publication works effectively.”

The scientists studied a mixture of three plant proteins – an enzyme known as urease, concanavalin A, and concanavalin B. At the SPB/SFX instrument (single particles, clusters and biomolecules /serial femtosecond crystallography), a jet of liquid containing a stream of tiny protein crystals was injected into the interaction chamber.

The X-ray beam, consisting of series of ultra-short X-ray pulses, was fired at the jet, hitting the crystals. Where X-ray pulses interacted with the crystals, so-called diffraction patterns were captured by the detector situated behind the interaction chamber.

With the help of computer algorithms, these images can be used to construct 3D models of the proteins being studied. The scientists were able to collect many thousands of images which were good enough to be able to distinguish between the three proteins, and construct 3D models of the concanavalin A and B proteins.

The X-ray laser can generate up to 27 000 pulses per second. However, the X-ray pulses of the European XFEL X-ray beam are organized into short bursts which are separated by longer pauses with no pulses at all. If a burst lasted an entire second, it would deliver more than a million pulses – or 1.1 megahertz. Now, for the first time ever – such a rate of over one million pulses per second, or one megahertz has been reached. No other X-ray facility worldwide currently can provide such a high rate.

Dr. Adrian Mancuso, leading scientist at the SPB/ SFX instrument: “This milestone is the fruit of a lot of hard work by the SPB/SFX team and all European XFEL staff, as well as all of our early users–from more than 35 universities and labs around the world – who assisted with commissioning the SPB/SFX instrument. With these results we could now, for example, use these pulses to produce movies of molecules in motion. If we can kick start a reaction during the first few pulses of a train, we can then use the rest of the pulses to take snapshots of that reaction as it unfolds.”

Currently only five X-ray lasers world-wide produce X-rays with a short wavelength, so-called hard X-rays. Access for experiments is therefore in high demand, and the facilities are generally highly oversubscribed. Shortened experiment time thanks to an increased number of X-ray pulses as described today will enable more and more complex research projects and allow a larger number of scientists access to the brightest X-ray sources in the world.

Acknowledgement: The SFX User Consortium has provided instrumentation and personnel that has enabled this experiment. The SFX User consortium is composed of scientific partners from Germany, Sweden, the United Kingdom, Slovakia, Switzerland, Australia and the United States.

About European XFEL

The European XFEL in the Hamburg area is a new international research facility of superlatives: 27,000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources open up completely new opportunities for science. Research groups from around the world are be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The operation of the facility is entrusted to European XFEL, a non-profit company that cooperates closely with its main shareholder, the research centre DESY, and other organisations worldwide. European XFEL has a workforce of more than 400 employees and started user operation September 2017. With construction and commissioning costs of 1.25 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European new research facilities to date. At present, 12 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, Switzerland, and the United Kingdom. For more information on European XFEL go to www.xfel.eu.

Contact:
Bernd Ebeling
Telefon: +49 040 8998-6921
Email: bernd.ebeling@xfel.eu

Originalpublikation:

http://dx.doi.org/10.1038/s41467-018-05953-4

Weitere Informationen:

http://media.xfel.eu/XFELmediabank/?l=de&c=17793 (Bilder)

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft
Further information:
https://www.xfel.eu/news_and_events/news/index_eng.html?openDirectAnchor=1568&two_columns=0

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>