Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding solid ground

21.02.2011
Experimental evidence adds to the likelihood of the existence of supersolids, an exotic phase of matter

Supersolids and superfluids rank among the most exotic of quantum mechanical phenomena. Superfluids can flow without any viscosity, and experience no friction as they flow along the walls of a container, because their atoms ‘condense’ into a highly coherent state of matter. Supersolids are also characterized by coherent effects, but between vacancies in a crystal lattice rather than between the solid’s atoms themselves.

The reduction in the rotational inertia of a bar of solid helium-4 as it was cooled to very low temperatures provided the first experimental evidence for supersolids. Physicists interpreted the reduction to mean that some amount of supersolid helium had formed and decoupled from the remainder of the bar, affecting its rotational inertia and frequency. Others argued that the reduction in inertia resulted from a change in the helium’s viscosity and elasticity with temperature, rather than from the onset of supersolidity.

Kimitoshi Kono from the RIKEN Advanced Science Institute in Wako, Eunseong Kim from KAIST in Korea, and their colleagues from these institutes have now disproved the alternative interpretation by simultaneously measuring the shear modulus (a measure of viscosity and elasticity) and the rotational inertia of a solid helium-4 cell as its temperature dropped from 1 kelvin to 15 thousandths of a kelvin[1]. The cell was made to rotate clockwise and then counterclockwise periodically, as well as to rotate clockwise or counterclockwise continuously (Fig. 1). The continuous rotation affected the inertial mass of the helium but its shear modulus, allowing these quantities to be monitored independently.

Under continuous rotation, the degree of change in the rotational inertia had a clear dependence on rotation velocity, while the shear modulus did not. In addition, the energy dissipated by the rotation increased at high speeds. Both of these observations contrast to what would be expected if viscoelastic effects were at play, rather than supersolidity. The researchers also found that periodic rotation and continuous rotation affected the rotation differently, raising new questions about the experimental system.

The data support the interpretation that changes in the rotational inertia of helium-4 at low temperature result from supersolidity. This is important because of the novel and surprising nature of the phenomenon itself, says Kono. “Superfluidity in a solid is a very radical concept which, if proven, is certainly a good candidate for the Nobel Prize” he adds. “Therefore the first priority is to determine whether it can be proven in a fashion that will convince the low-temperature physics community.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Choi, H., Takahashi, D., Kono, K. & Kim, E. Evidence of supersolidity in rotating solid helium. Science 330, 1512–1515 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>