Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding ET may require giant robotic leap

19.04.2012
Autonomous, self-replicating robots -- exobots -- are the way to explore the universe, find and identify extraterrestrial life and perhaps clean up space debris in the process, according to a Penn State engineer, who notes that the search for extraterrestrial intelligence -- SETI -- is in its 50th year.

"The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political economic, and technical difficulties," John D. Mathews, professor of electrical engineering, reported in the current issue of the Journal of the British Interplanetary Society.

If aliens are out there, they have the same problems we do, they need to conserve resources, are limited by the laws of physics and they may not even be eager to meet us, according to Mathews.

He suggests that "only by developing and deploying self-replicating robotic spacecraft -- and the incumbent communications systems -- can the human race efficiently explore even the asteroid belt, let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond."

Mathews assumes that any extraterrestrial would need to follow a similar path to the stars, sending robots rather than living beings, which would explain why SETI has not succeeded to date.

"If they are like us, they too have a dysfunctional government and all the other problems plaguing us," said Mathews. "They won't want to spend a lot to communicate with us."

It is extremely difficult to broadcast into the galaxy and requires vast resources. Radio signals need to emanate in every direction to fill the sky, and the energy requirement to broadcast throughout space is quite high.

"Current infrared lasers can communicate across our solar system," said Mathews. "The problem in terms of SETI is they are highly directed beams."

Point-to-point communications using infrared signaling requires less power, but the signals are extremely directional. If ET is using laser-generated infrared signaling, we would never notice their signals because they are so tightly targeted to their destinations.

Mathews suggests that if human exploration is not possible, robots could go where many people do not want to go and do what many do not want to do, not only on Earth, but also in space.

To minimize the cost, he suggests that the initial robots be manufactured on the moon to take advantage of the resources and the one-sixth gravity. He notes that we have the technology to create these exobots now, except for a compact power source. To create a network of autonomous robots capable of passing information to each other and back to earth, the vehicles must be able to identify their exact location and determine the time. With these two bits of knowledge, they should be able to determine where all the other robots near them are and target them with an infrared laser beam carrying data.

"The expensive part of launching anything is escaping the surface of Earth and its gravity well," said Mathews. "It would also be easier to target the space debris in near Earth orbit and in geosynchronous orbit and even recycle it."

Initially, the exobots would serve two purposes: clear existing debris and monitor the more than 1,200 near Earth asteroids that are particularly hazardous in that they closely approach Earth during their orbits.

"As a first step, we really should launch robot vehicles to learn something about these asteroids and to place beacons on them for identification and tracking," said Mathews.

Ultimately, the network of exobots -- self-replicating, autonomous and capable of learning -- will spread through the solar system and into the galaxy, using the resources they find there to continue their mission. Communicating with infrared lasers is communicating at the speed of light, which is the fastest we can hope to achieve.

"Our assumption in the search for extraterrestrial intelligence is that ET wants to be found," said Mathews. "But who has energy resources to spend trying to wave their metaphorical hand across the galaxy?"

He said it is more likely that one of our exobots will intercept a signal from one of theirs if we are to make first contact.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Earth's magnetic field SETI infrared lasers solar system

More articles from Physics and Astronomy:

nachricht The taming of the light screw
22.03.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Magnetic micro-boats
21.03.2019 | Max-Planck-Institut für Polymerforschung

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Riveting,Screwing, Gluing in Aircraft Construction: Smart Human-Robot Teams Master Agile Production

26.03.2019 | Trade Fair News

Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity

26.03.2019 | Life Sciences

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>