Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermilab physicists discover "doubly strange" particle

05.09.2008
Physicists of the DZero experiment at the U.S. Department of Energy's Fermi National Accelerator Laboratory have discovered a new particle made of three quarks, the Omega-sub-b (Ùb). The particle contains two strange quarks and a bottom quark (s-s-b). It is an exotic relative of the much more common proton and weighs about six times the proton mass.

The discovery of the doubly strange particle brings scientists a step closer to understanding exactly how quarks form matter and to completing the "periodic table of baryons." Baryons (derived from the Greek word "barys," meaning "heavy") are particles that contain three quarks, the basic building blocks of matter. The proton comprises two up quarks and a down quark (u-u-d).

Combing through almost 100 trillion collision events produced by the Tevatron particle collider at Fermilab, the DZero collaboration found 18 incidents in which the particles emerging from a proton-antiproton collision revealed the distinctive signature of the Omega-sub-b. Once produced, the Omega-sub-b travels about a millimeter before it disintegrates into lighter particles. Its decay, mediated by the weak force, occurs in about a trillionth of a second.

Theorists predicted the mass of the Omega-sub-b baryon to be in the range of 5.9 to 6.1 GeV/c2. The DZero collaboration measured its mass to be 6.165 ± 0.016 GeV/c2. The particle has the same electric charge as an electron and has spin J=1/2.

The Omega-sub-b is the latest and most exotic discovery of a new type of baryon containing a bottom quark at the Tevatron particle collider at Fermilab. Its discovery follows the observation of the Cascade-b-minus baryon (Îb-), first observed by the DZero experiment in 2007, and two types of Sigma-sub-b baryons (Ób), discovered by the CDF experiment at Fermilab in 2006.

"The observation of the doubly strange b baryon is yet another triumph of the quark model," said DZero cospokesperson Dmitri Denisov, of Fermilab. "Our measurement of its mass, production and decay properties will help to better understand the strong force that binds quarks together."

According to the quark model, invented in 1961 by theorists Murray Gell-Mann and Yuval Ne'eman as well as George Zweig, the four quarks up, down, strange and bottom can be arranged to form 20 different spin-1/2 baryons. Scientists now have observed 13 of these combinations.

"The measurement of the mass of the Omega-sub-b provides a great test of computer calculations using lattice quantum chromodynamics," said Fermilab theorist Andreas Kronfeld. "The discovery of this particle is an example of all the wonderful results pouring out of accelerator laboratories over the past few years."

The Omega-sub-b is a relative of the famous and "even stranger" Omega-minus, which is made of three strange quarks (s-s-s).

"After the discovery of the Omega-minus, people started to accept that quarks really exist," said DZero co-spokesperson Darien Wood, of Northeastern University. "Its discovery, made with a bubble chamber at Brookhaven National Laboratory in 1964, is the textbook example of the predictive power of the quark model."

The DZero collaboration submitted a paper that summarizes the details of its discovery to the journal Physical Review Letters. It is available online at: http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B08G/

DZero is an international experiment of about 600 physicists from 90 institutions in 18 countries. It is supported by the U.S. Department of Energy, the National Science Foundation and a number of international funding agencies. Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.

Kurt Riesselmann | EurekAlert!
Further information:
http://www.fnal.gov

Further reports about: Baryons DZero Fermi Fermilab GeV/c2 Omega-minus Omega-sub-b quantum chromodynamics strange quarks

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>