Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Femto Photonic Production: New techniques using ultrafast lasers for the manufacturing of tomorrow

15.04.2015

Laser technology plays an outstanding role in the German economy: some 40 percent of beam sources sold worldwide and 20 percent of laser systems for material processing come from Germany. And when it comes to laser use in manufacturing, German companies are at the forefront. To preserve and build on these strengths, the German Federal Ministry of Education and Research (BMBF) has founded the Digital Photonic Production (DPP) research campus, which will be funded by 2 million euros annually for up to 15 years.

In a collaboration that brings together RWTH Aachen University, the Fraunhofer Institute for Laser Technology ILT and industrial partners, the Femto Photonic Production joint research project intends to lay the foundations for the use of ultrafast lasers in industrial manufacturing processes.


Cutting thin glass using an ultrafast laser.

Picture source: Fraunhofer ILT, Aachen, Germany / Volker Lannert.


Filigree quartz glass component (diameter approx. 2 cm) with subtractive 3D print manufactured by project partner LightFab.

Picture Source: Fraunhofer ILT, Aachen, Germany.

Research campus – A sustainable culture of innovation fostered through physical proximity

The DPP research campus is one of nine research campuses set up around Germany. It was officially opened in January 2015 by Thomas Rachel, Parliamentary State Secretary to the German Federal Ministry of Education and Research, establishing a new form of long-term and systematic cooperation between the university, the Fraunhofer-Gesellschaft and currently 28 partners from industry all under one roof.

The goal of this collaboration is the complementary pooling of different resources with a new focus on joint application-oriented basic research. As regards content, the DPP research campus concentrates on researching new methods and fundamental physical effects for the use of lasers as a manufacturing tool, particularly for the major topics of the future, such as energy, health, mobility, security, and information and communications technology.

Three projects by researchers at RWTH Aachen University in cooperation with Fraunhofer ILT and various industrial partners have already been approved within the Aachen research campus: Nano Photonic Production for researching novel VCSEL beam sources; Direct Photonic Production for further developing additive manufacturing methods; and Femto Photonic Production with a main focus on further developing ultrafast laser manufacturing methods.

Femto Photonic Production – Laser processing for modern high-tech materials

Launched in October 2014, the Femto Photonic Production project is scheduled to run for five years. Led by RWTH Aachen University, it is designed to yield a better understanding of the fundamentals involved in the processing of modern materials. The research activities focus particularly on materials with large electronic band gaps – in other words, with high transparencies – such as glass, sapphire and diamond.

Ultrafast lasers (also known as ultrashort pulse, or USP, lasers) represent a class of optical processing systems capable of generating new functionalities on materials and components. However, the fundamental processes at work in the interaction between ultrashort laser pulses and the absorption effects in transparent materials are still not sufficiently understood today.

Many of the materials being researched in the project – and which will be relevant for future applications – are transparent, which means that they can only be processed using very complex laser processes. The core of the joint project is the fundamental analysis, simulation and description of the interaction of laser radiation with transparent materials.

Based on these fundamental results, the optimum performance parameters for the various laser classes along with the adjusted optics and system solutions will be determined for all relevant material classes and subsequently evaluated in experimental studies together with the project’s industrial partners.

One of the goals of these research activities is to make the laser processing of electronic components a viable option for the manufacturing of displays, modern LEDs and power transistors.

Through the close cooperation of experts from RWTH Aachen University and Fraunhofer ILT with the beam source manufacturers TRUMPF, EdgeWave and Amphos, and the system providers 4Jet, LightFab and Pulsar Photonics, project work can draw on a machine and system pool unparalleled anywhere in the world.

This allows scientists and engineers from research and industry to work together productively on topics and interests that are common to them, which is very much in the spirit of cooperation behind the Digital Photonic Production research campus.

Overview of project partners

• Chair for Laser Technology LLT, RWTH Aachen University
• Chair of Optical Systems Technologies TOS, RWTH Aachen University
• Nonlinear Dynamics of Laser Manufacturing Processes Instruction and Research Department NLD, RWTH Aachen University
• 4Jet GmbH
• Amphos GmbH
• EdgeWave GmbH
• Fraunhofer Institute for Laser Technology ILT
• LightFab UG
• Pulsar Photonics GmbH
• TRUMPF Laser- und Systemtechnik GmbH

Contact

Dipl.-Ing. Claudia Hartmann
Micro and Nano Structuring Group
Telephone +49 241 8906-207
claudia.hartmann@ilt

Dr. Arnold Gillner
Head of the competence area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Fraunhofer Institute for Laser Technology ILT
St4inbachstraße
52074 Aachen

Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.rwth-aachen.de/cms/root/Wirtschaft/Campusprojekt/Forschungsschwerpunk...

Petra Nolis | Fraunhofer-Institut für Lasertechnik ILT

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>