Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast and Ultra-precise: Processing Optics with LBF

13.04.2018

After having developed laser polishing, the Fraunhofer Institute for Laser Technology ILT in Aachen has now also developed an ablative process for the ultra-precise machining of optics. Laser Beam Figuring (LBF) enables an ablation of less than 5 nm. For the first time, a complete process chain for the laser-based optics production has been made possible.

Thanks to their good imaging properties, aspheres are the dream of many optical designers. Aspheres have one great disadvantage, however: mechanical processing, which is much more time-consuming than for conventional spherical optics. And for a high surface quality, a special post-treatment is often necessary.


The LBF process is particularly suitable for the correction of non-spherical optics in small to medium quantities.

© Fraunhofer ILT, Aachen, Germany.


Laser polishing is a first step towards simplifying this surface finishing issue. In laser polishing, the glass surface is heated with CO2 laser radiation to just below the evaporation temperature. The viscosity of the surface sinks, the roughness flows out and the surface is smoothed.

This way, the micro-roughness can be improved quickly.

For periodic structures with a wavelength of more than 100 μm, which can occur during mechanical processing, laser polishing is not enough. This requires ultra-precise ablation processes.

Laser Beam Figuring

For ultra-precision machining with a few nanometers’ removal, Ion Beam Figuring (IBF) and Magnetorheological Finishing (MRF) have been the methods of choice. The experts at Fraunhofer ILT have now developed a laser-based method that can work more accurately and faster.


In Laser Beam Figuring (LBF), a pulsed CO2 laser removes glass material from the surface. The ablation rate can be precisely controlled by regulating the pulse duration. The lateral resolution of the ablation is essentially determined by the size of the laser spot. For example, a vertical resolution of less than 5 nm and a lateral resolution of less than 100 μm are possible during ablation.


Unlike the IBF, the LBF process does not require a vacuum; nor does it need any additional fluids, unlike MRF. At the same time, LBF enables maximum flexibility in shaping, as the non-contact process works on surfaces of almost any shape.

First Continuous Laser-based Process Chain in Optics Production

With LBF, Fraunhofer ILT has created the first continuous laser-based process chain in optical production. In a first step, the material is removed relatively coarsely for an individual shape. Then the surface is polished with the laser. For the final shape correction then the LBF is used.


Thanks to its speed and flexibility in surface design, the LBF process is particularly well suited for cost-effective shape correction of non-spherical optical components in small to medium quantities. In addition to aspheres, micro-optics can also be processed. The laser shape correction can be combined with both laser polishing and conventional machining methods.


The work has been funded by the Federal Ministry of Education and Research (BMBF), among others, as part of the RapidOptics project under grant number 13N13294.


Fraunhofer ILT will be presenting the LBF process and other laser-based technologies for optical production from May 15 to 17 at Optatec in Frankfurt. You will find the Fraunhofer Joint Stand F14 in Hall 3.0.

Contact

Christian Weingarten M. Sc.
Group Polishing
Telephone +49 241 8906-282
christian.weingarten@ilt.fraunhofer.de

Dr.-Ing. Edgar Willenborg
Group Manager Polishing
Telephone +49 241 8906-213
edgar.willenborg@ilt.fraunhofer.de

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>