Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme high-frequency signals enable terabits-per-second data links

01.04.2020

A team, including the man who invented DSL technology, attempted to scale up the original idea to use terahertz frequencies and discovered terabits-per-second data links are possible

Using the same technology that allows high-frequency signals to travel on regular phone lines, researchers tested sending extremely high-frequency, 200 GHz signals through a pair of copper wires.


A 13- by 13-millimeter measurement for each of the 169 possible locations of the signal input location of the waveguide. These measurements reveal multiple maxima in each 13x13 spot, confirming a superposition of modes in the signal propagating through the waveguide.

Image courtesy of the authors

The result is a link that can move data at rates of terabits per second, significantly faster than currently available channels.

While the technology to disentangle multiple, parallel signals moving through a channel already exists, thanks to signal processing methods developed by John Cioffi, the inventor of digital subscriber lines, or DSL, questions remained related to the effectiveness of implementing these ideas at higher frequencies.

To test the transmission of data at higher frequencies, authors of a paper published this week in Applied Physics Letters, from AIP Publishing, used experimental measurements and mathematical modeling to characterize the input and output signals in a waveguide.

They used a device with two wires running parallel inside a sheath with a large diameter that facilitates increased mixing of the waveguide modes. These mixtures enable the transmission of parallel noninterfering data channels. Higher frequencies allow larger bandwidth and more data to travel through a channel, if the architecture of the channel is such that the data is not garbled by interference.

"To confirm and characterize this behavior, we measured the spatial distribution of energy at the output of the waveguide by mapping the waveguide's output port, showing where the energy is located," author Daniel Mittleman said.

The researchers created a 13- by 13-millimeter grid for the output of each possible input condition, resulting in a 169 x 169 channel matrix that provides a complete characterization of the waveguide channel. The results demonstrate a superposition of waveguide modes in the channel and allow estimation of data rates.

"It is exciting to show that a waveguide can support a data rate of 10 terabits per second, even if only over a short range. That's well beyond what anybody has previously envisioned," Mittleman said. "Our work demonstrates the feasibility of this approach to high-rate data transmission, which can be further exploited when the sources and detectors reach the appropriate level of maturity."

The researchers intend to further investigate ohmic losses, a function of the resistance of each of the cell components and caused by the metal hardware of the waveguide, which dictate the limit on the length of the channel. Their work could be used in applications that require large amounts of data to move quickly over short distances, such as between racks in a data center or for chip-to-chip communication.

###

The article, "A wire waveguide channel for terabit-per-second links," is authored by Rabi Shrestha, Kenneth Kerpez, Chan Soo Hwang, Mehdi Mohseni, John Cioffi and Daniel M. Mittleman. The article will appear in Applied Physics Letters on March 31, 2020 (DOI: 10.1063/1.5143699). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5143699.

ABOUT THE JOURNAL

Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See https://aip.scitation.org/journal/apl.

Media Contact

Larry Frum
media@aip.org
301-209-3090

http://www.aip.org 

Larry Frum | EurekAlert!
Further information:
http://dx.doi.org/10.1063/1.5143699

More articles from Physics and Astronomy:

nachricht Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications
13.07.2020 | Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, Chinese Academy

nachricht Robust high-performance data storage through magnetic anisotropy
13.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>