Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Extinguish a Hot Flame, DARPA Studied Cold Plasma

13.07.2012
DARPA performers demonstrate techniques to manipulate and extinguish small flames locally using electric and acoustic suppression; results could benefit combustion research

Fire in enclosed military environments such as ship holds, aircraft cockpits and ground vehicles is a major cause of material destruction and jeopardizes the lives of warfighters. For example, a shipboard fire on the aircraft carrier USS George Washington in May 2008 burned for 12 hours and caused an estimated $70 million in damage.

For nearly 50 years, despite the severity of the threat from fire, no new methods for extinguishing or manipulating fire were developed. In 2008, DARPA launched the Instant Fire Suppression (IFS) program to develop a fundamental understanding of fire with the aim of transforming approaches to firefighting.

Traditional fire-suppression technologies focus largely on disrupting the chemical reactions involved in combustion. However, from a physics perspective, flames are cold plasmas. DARPA theorized that by using physics techniques rather than combustion chemistry, it might be possible to manipulate and extinguish flames. To achieve this, new research was required to understand and quantify the interaction of electromagnetic and acoustic waves with the plasma in a flame.

The IFS program was executed in two phases. In Phase I, performers studied the fundamental science behind flame suppression and control, exploring a range of approaches before down-selecting to electromagnetics and acoustics. In Phase II, performers determined the mechanisms behind electric and acoustic suppression and evaluated the scalability of these approaches for defense applications.

One of the technologies explored was a novel flame-suppression system that used a handheld electrode to suppress small methane gas and liquid fuel fires. In the video below, performers sweep the electrode over the ignited burner array and progressively extinguish the 10-cm2 gas flame. Since the electrode is sheathed in ceramic glass, no current is established between the electrode and its surroundings. A visualization of gas flows during the suppression would show that the oscillating field induces a rapid series of jets that displace the combustion zone from the fuel source, leading to extinguishment of the fire. Put simply, the electric field creates an ionic wind that blows out the flame. This same approach was not able to suppress a small heptane pool flame.

Performers also evaluated the use of acoustic fields to suppress flames. In the video below, a flame is extinguished by an acoustic field generated by speakers on either side of the pool of fuel. Two dynamics are at play in this approach. First, the acoustic field increases the air velocity. As the velocity goes up, the flame boundary layer, where combustion occurs, thins, making it easier to disrupt the flame. Second, by disturbing the pool surface, the acoustic field leads to higher fuel vaporization, which widens the flame, but also drops the overall flame temperature. Combustion is disrupted as the same amount of heat is spread over a larger area. Essentially, in this demonstration the performers used speakers to blast sound at specific frequencies that extinguish the flame.

IFS Phase II was completed in December 2011. IFS performers succeeded in demonstrating the ability to suppress, extinguish and manipulate small flames locally using electric and acoustic suppression techniques. However, it was not clear from the research how to effectively scale these approaches to the levels required for defense applications.

Remarking on the overall impact of the IFS program, Matthew Goodman, DARPA program manager, said, “We have shown that the physics of combustion still has surprises in store for us. Perhaps these results will spur new ideas and applications in combustion research.”
For example, the data collected by the IFS program could potentially be applied to the inverse challenge of fire extinguishment, namely increasing the efficiency of combustion. Such technology could be especially beneficial to defense technologies that employ small engines.

Associated images and videos posted on www.darpa.mil and http://www.youtube.com/user/DARPAtv may be reused according to the terms of the DARPA Usage Agreement, available here: http://go.usa.gov/nYr.

DARPA Public Affairs | EurekAlert!
Further information:
http://www.darpa.mil
http://www.darpa.mil/NewsEvents/Releases/2012/07/12.aspx

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>