Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring the mysteries of supercooled water

01.03.2017

Physicists at Roma Tre University in Italy have developed a computer-based simulation to shed light on a thermodynamic property of water that can affect many biological and chemical processes

There are few things more central to life on earth than water. It dominates the physical landscape, covering much of the planet as oceans. It's also a major component of the human body, comprising, for example, more than 70% of the mass of a newborn baby.


Top left panel: Snapshot of a slice of water confined in the silica pore. The blue circle contains the 'free water,' the water molecules that are not in contact with the substrate. Bottom left panel: Density profile of the water molecules along the pore radius. The regions occupied respectively by the free water and the "bound water," water attached to the substrate, are indicated. Top right panel: The curves represent how the oxygen atoms of the molecules are arranged in shells around a given oxygen atom in the origin at different temperatures. The peaks represent the positions where the different shells are located. The structure is shown for some of the supercooled temperatures investigated. Bottom right panel: The main result of our computer simulation is given by the behavior of the excess entropy, a fraction of the total entropy, obtained from the oxygen structure of free water. The deviation of the calculated black points from the theoretical (red) curve indicates that water undergoes a change of behavior before and upon approaching the glass transition.

Credit: Margherita De Marzio, Gaia Camisasca, Maria Martin Conde, Mauro Rovere and Paola Gallo

Yet despite its omnipresence, water has many physical properties that are still not completely understood by the scientific community. One of the most puzzling relates to the activity of water molecules after they undergo a process called "supercooling."

Now, new findings from Roma Tre University, in Rome, Italy, on the interactions of water molecules under these exotic conditions appear this week in the Journal of Chemical Physics, from AIP Publishing.

"Normally, when liquid water is cooled below its freezing point, the water molecules arrange themselves in the ordered, crystal structure that is ice," said Paola Gallo, an associate professor of physics at Roma Tre University. "With supercooling, special techniques are employed to cool water very quickly in such a way that it remains a liquid even though its temperature has been lowered well below its freezing point. There are a number of anomalies in water molecules' activity in these supercooled conditions that have not yet been fully explained."

Using a computer-based simulation, Gallo and her colleagues shed light on a thermodynamic property of water that helps explain how water molecules in a supercooled state interact with each other and with the molecules of other materials.

"While supercooling is an important phenomenon to study, the challenge is that it's very difficult to supercool water in a lab," said Gallo.

In the past, scientists have attempted to address this issue by supercooling water "in confinement," focusing efforts on studying water confined in manufactured pores having a radius of a few namometers (i.e. one or two orders of magnitude larger than the diameter of the molecule of water). This, however, has raised a question of whether the properties of this confined water differ from that of bulk water, where water molecules interact freely in larger volumes.

"This question has been a point of ongoing interest in our work," said Gallo. "In previous studies, we have shown that interactions with other chemicals affect only those water molecules that are very physically close to the molecules of another chemical, such as the molecules that make up the wall of the pore. The water molecules at the center of the pore, the free water, retain many of the properties of bulk water."

"With this study, we discovered that there are further parallels," Gallo also said. "Specifically, our simulation shows that a property of the structure of the network of water molecules, which can be measured and verified experimentally, can be used to determine the changes in water's entropy, the thermodynamic quantity that measures disorder in a system [...] that may offer insights on some of the more unusual thermodynamic facets of water's activity in this supercooled state."

These findings create a framework for other experimental physicists to recreate the simulation with physical samples in a lab. For Gallo and her colleagues, their work offers a foundation for further investigation of the relationships between the thermodynamic characteristics of confined and bulk water.

"Water is the most important liquid that we have on earth," explained Gallo. "Any insights that researchers can uncover about its properties can advance not only our collective understanding of physics, but also of biology and chemistry, and open up new possibilities for integrating this knowledge into different technological applications."

###

The article, "Structural properties and fragile to strong transition in confined water," is authored by Margherita De Marzio, Gaia Camisasca, Maria Martin Conde, Mauro Rovere and Paola Gallo. The article will appear in The Journal of Chemical Physics Feb. 28, 2017 [DOI:10.1063/1.4975624]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4975624.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

Media Contact

AIP Media Line
media@aip.org
301-209-3090

 @jasonbardi

http://www.aip.org 

AIP Media Line | EurekAlert!

Further reports about: human body supercooled water thermodynamic water molecules

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>