Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence found for the Higgs boson direct decay into fermions

23.06.2014

For the first time, researchers at CERN have found evidence for the direct decay of the Higgs boson into fermions – another strong indication that the particle discovered in 2012 behaves in the way the standard model of particle physics predicts. Researchers from the University of Zurich made a significant contribution to the study published in Nature Physics.

For the first time, scientists from the CMS experiment on the Large Hadron Collider (LHC) at CERN have succeeded in finding evidence for the direct decay of the Higgs boson into fermions. Previously, the Higgs particle could only be detected through its decay into bosons.

“This is a major step forwards,” explains Professor Vincenzo Chiochia from the University of Zurich’s Physics Institute, whose group was involved in analyzing the data. “We now know that the Higgs particle can decay into both bosons and fermions, which means we can exclude certain theories predicting that the Higgs particle does not couple to fermions.” As a group of elementary particles, fermions form the matter while bosons act as force carriers between fermions.

According to the standard model of particle physics, the interaction strength between the fermions and the Higgs field must be proportional to their mass. “This prediction was confirmed,” says Chiochia; “a strong indication that the particle discovered in 2012 actually behaves like the Higgs particle proposed in the theory.”

... more about:
»CERN »CMS »Collider »GeV »Hadron »Higgs »LHC »Vincenzo »detector »fermions »mass »physics

Combined data analysis
The researchers analyzed the data gathered at the LHC between 2011 and 2012, combining the Higgs decays into bottom quarks and tau leptons, both of which belong to the fermion particle group. The results reveal that an accumulation of these decays comes about at a Higgs particle mass near 125 gigaelectron volts (GeV) and with a significance of 3.8 sigma. This means that the probability of the background alone fluctuating up by this amount or more is about one in 14,000. In particle physics, a discovery is deemed confirmed from a significance of five sigma.

Measuring the Higgs decay modes
Three different processes were studied, whereby the UZH researchers analyzed the Higgs decay into taus. Because the Higgs particle is extremely short-lived, it cannot be detected directly, but rather only via its decay products. The bottom quarks and taus, however, have a long enough lifetime to be measured directly in the CMS experiment’s pixel detector.


The University of Zurich and the Large Hadron Collider
The University of Zurich is actively involved in the LHC at CERN with five experimental research groups: The groups headed by professors Florencia Canelli, Vincenzo Chiochia and Ben Kilminster conduct research with the CMS detector, Professors Ulrich Straumann’s and Nicola Serra’s groups with the LHCb detector. For the analysis and interpretation of the data, they are supported by the groups under professors Thomas Gehrmann, Stefano Pozzorini, Gino Isidori and PD Dr. Massimiliano Grazzini.

The CMS detector at CERN
The CMS detector measures the energy and impulse of photons, electrons, muons and other charged particles with high precision. Different measuring instruments are arranged in tiers inside the 12,500-ton detector. 179 institutions worldwide are involved in the construction and operation of the CMS detector. The Swiss institutions are the University of Zurich, ETH Zurich and the Paul Scherrer Institute, which jointly developed and constructed the CMS pixel detector. 


Literature:
The CMS Collaboration. «Evidence for the direct decay of the 125 GeV Higgs boson to fermions», Nature Physics Online. DOI: 10.1038/nphys3005

Contact:
Prof. Vincenzo Chiochia
Physics Institute of the University of Zurich
Tel. + 41 22 767 60 41
Mobile: +41 76 487 57 50
E-Mail: vincenzo.chiochia@cern.ch

Bettina Jakob
Media Relations
University of Zurich
Tel. +41 44 634 44 39
E-Mail: bettina.jakob@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Bettina Jakob | Universität Zürich

Further reports about: CERN CMS Collider GeV Hadron Higgs LHC Vincenzo detector fermions mass physics

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>