Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First Evidence Discovered of Planet's Destruction by Its Star

21.08.2012
The first evidence of a planet's destruction by its aging star has been discovered by an international team of astronomers.

The evidence indicates that the missing planet was devoured as the star began expanding into a "red giant" — the stellar equivalent of advanced age. "A similar fate may await the inner planets in our solar system, when the Sun becomes a red giant and expands all the way out to Earth's orbit some five-billion years from now," said Alex Wolszczan, an Evan Pugh Professor of Astronomy and Astrophysics at Penn State, University, who is one of the members of the research team. Wolszczan also is the discoverer of the first planet ever found outside our solar system.


The first evidence of a planet's destruction by its aging star indicates that the missing planet was devoured as the star began expanding into a "red giant" — the stellar equivalent of advanced age. "A similar fate may await the inner planets in our solar system, when the Sun becomes a red giant and expands all the way out to Earth's orbit some five-billion years from now," said Alexander Wolszczan, Evan Pugh Professor of Astronomy and Astrophysics at Penn State and the discoverer of the first planet ever found outside our solar system. Credit: Marty Harris/McDonald Obs./UT-Austin

The astronomers also discovered a massive planet in a surprisingly elliptical orbit around the same red-giant star, named BD+48 740, which is older than the Sun with a radius about eleven times bigger. Wolszczan and the team's other members, Monika Adamow, Grzegorz Nowak, and Andrzej Niedzielski of Nicolaus Copernicus University in Torun, Poland; and Eva Villaver of the Universidad Autonoma de Madrid in Spain, detected evidence of the missing planet's destruction while they were using the Hobby-Eberly Telescope to study the aging star and to search for planets around it. The evidence includes the star's peculiar chemical composition, plus the highly unusual elliptical orbit of its surviving planet.

"Our detailed spectroscopic analysis reveals that this red-giant star, BD+48 740, contains an abnormally high amount of lithium, a rare element created primarily during the Big Bang 14 billion years ago," Adamow said. Lithium is easily destroyed in stars, which is why its abnormally high abundance in this older star is so unusual. "Theorists have identified only a few, very specific circumstances, other than the Big Bang, under which lithium can be created in stars," Wolszczan added. "In the case of BD+48 740, it is probable that the lithium production was triggered by a mass the size of a planet that spiraled into the star and heated it up while the star was digesting it."

The second piece of evidence discovered by the astronomers is the highly elliptical orbit of the star's newly discovered massive planet, which is at least 1.6 times as massive as Jupiter. "We discovered that this planet revolves around the star in an orbit that is only slightly wider than that of Mars at its narrowest point, but is much more extended at its farthest point," Niedzielski said. "Such orbits are uncommon in planetary systems around evolved stars and, in fact, the BD+48 740 planet's orbit is the most elliptical one detected so far." Because gravitational interactions between planets are responsible for such peculiar orbits, the astronomers suspect that the dive of the missing planet toward the star before it became a giant could have given the surviving massive planet a burst of energy, throwing it into an eccentric orbit like a boomerang.

"Catching a planet in the act of being devoured by a star is an almost improbable feat to accomplish because of the comparative swiftness of the process, but the occurrence of such a collision can be deduced from the way it affects the stellar chemistry," Villaver explained. "The highly elongated orbit of the massive planet we discovered around this lithium-polluted red-giant star is exactly the kind of evidence that would point to the star's recent destruction of its now-missing planet."

The paper describing this discovery is posted in an early online edition of the Astrophysical Journal Letters (Adamow et al. 2012, ApJ, 754, L15). The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, Penn State University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The telescope is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

[ Barbara K. Kennedy ]

CONTACTS
Alexander Wolszczan: alex@astro.psu.edu, +1 814-863-1756
Andrzej Niedzielski: Andrzej.Niedzielski@astri.umk.pl, +56 611-30-57
Eva Villaver: Eva.Villaver@uam.es, +34 914976797
Barbara Kennedy (Penn State PIO): +1 814-863-4682, science@psu.edu
FINANCIAL SUPPORT
This research received financial support from the U. S. National Aeronautics and Space Administration (NASA grant NNX09AB36G), the Polish Ministry of Science and Higher Education (grant N N203 510938), the Spanish Ministry of Science and Innovation (grant AYA2010-20630), and the Marie Curie Seventh Framework Programme (FP7-People-RG268111).

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>