Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First evidence for a spherical magnesium-32 nucleus

03.02.2011
Exploring an 'island of inversion,' physicists find new clues to element synthesis in supernovae

Elements heavier than iron come into being only in powerful stellar explosions, supernovae. During nuclear reactions all kinds of short-lived atomic nuclei are formed, including more stable combinations – the so-called magic numbers – predicted by theory. Yet here, too, there are exceptions: the islands of inversion. Headed by physicists from the Excellence Cluster Universe at the Technische Universitaet Muenchen (TUM), an international team of scientists has now taken a closer look at the island that was first discovered. They have now published their results in Physical Review Letters.


A new discovery, and the questions it raises, could help explain in greater detail how elements are synthesized in stellar explosions -- such as the supernova that left behind the Crab Nebula.
Credit: VLT/ESO

All chemical elements known on earth come from space. The most common elements in the universe, hydrogen and helium, were created shortly after the Big Bang. Other elements, such as carbon and oxygen, came into existence later, through the fusion of atomic nuclei inside stars. Elements heavier than iron owe their emergence to gigantic stellar explosions, known as supernovae. These include, for instance, the precious metals gold and silver or the radioactive uranium.

The cauldron of a supernova gives birth to a whole array of high-mass atomic nuclei, which decay to stable elements via different short-lived intermediate stages. Analogous to the shell model for electrons, nuclear physicists developed a model that predicts particularly high stability for specific combinations in the number of neutrons and protons. These are the "magic numbers": the shells are full and the nuclei nearly spherical.

However, there are "magic" nuclei that deviate from the expected shell structure. An international collaboration under the direction of physicists from the Cluster of Excellence Origin and Structure of the Universe at the TUM took a closer look at the nuclei in a domain with the magic neutron number 20, also known as the "island of inversion." Their measurements with REX-ISOLDE, an accelerator for radioactive ion beams at CERN, led to surprising results.

In their experiment the scientists studied the neutron-rich isotope magnesium-32 by shooting a magnesium-30 beam at a titanium film loaded with tritium, a radioactive isotope of hydrogen. In a so-called pair transfer reaction, two neutrons are knocked off the tritium and transferred to the magnesium nucleus, thus turning it into magnesium-32.

The neutron-rich isotope magnesium-32, whose nucleus has 20 neutrons and 12 protons, is supposed to be magic and, as such, should have a spherical shape. However, the lowest energy state in magnesium-32 is not spherical, but deformed. The nucleus is reminiscent of an egg-shaped American football. The spherical configuration was not supposed to ensue until higher states of energy were reached.

For the first time ever, the scientists succeeded in confirming the existence of the spherical magnesium-32 nucleus. What's more, the spherical magnesium-32 nucleus was generated at a much lower energy level than theoretically predicted. This result has yet again put a question mark on the theoretical models describing changes in shell structure in this and other regions of the table of nuclides.

"We were overjoyed to have finally succeeded in confirming the existence of the spherical magnesium-32 nucleus," says Professor Kruecken, Chair of Hadrons and Nuclear Physics at the TU Muenchen. "But these insights present new challenges to us physicists. In order to be able to predict the exact course of element synthesis in stellar explosions, we need to better understand the mechanism that causes the changes in shell structure." The scientists assume it will need a series of further experiments before they can give an unambiguous description of the processes related to the mysterious islands of inversion and new magic numbers.

This work was supported by the Federal Ministry of Education and Research of Germany (BMBF) under contracts 06MT238, 06MT9156, 06KY9136I, 06DA9036I06DA9041I, by the German Research Foundation (DFG) via the Cluster of Excellence Origin and Structure of the Universe, by the European Comission within the FP6 through I3-EURONS (contract no. RII3-CT-2004- 506065), by the Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO), GOA/2004/03 and IAP P6/23 (Belgium), by the Helmholtz International Center for FAIR (Facility for Antiproton and Ion Research) and the US-Department of Energy under contract number DE-AC02-05CH11231.

Original publication:

Discovery of the Shape Coexisting 0+ State in 32Mg by a Two Neutron Transfer Reaction,
K. Wimmer et.al., Physical Review Letters, 105, 252501 (2010) –
DOI: 10.1103/PhysRevLett.105.252501
Link: http://dx.doi.org/10.1103/PhysRevLett.105.252501
Contact:
Prof. Dr. Reiner Kruecken
Technische Universitaet Muenchen
Department of Physics, E 12
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12434 – Fax: +49 89 289 12435
E-Mail: Reiner.Kruecken@ph.tum.de
The Excellence Cluster "Origin and Structure of the Universe" was established at the Technische Universitaet Muenchen (TUM) in 2006. The research collaboration unifies the physics faculties of the TUM and Ludwig-Maximilians-Universitaet (LMU) as well as the University Observatory at the LMU. Further partners in the Cluster include the Max-Planck-Institutes for Physics, Astrophysics, for Extraterrestrial Physics and Plasma Physics as well as the European Southern Observatory (ESO). In the collaboration, more than 200 scientists are committed to decode the great secrets of the Universe. The Cluster is located at the Research Center Garching.

Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 460 professors, 7,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 26,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university. http://www.tum.de

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>