Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Event Horizon Telescope is measuring the shadow of the black hole at the center of the Galaxy

11.04.2017

The international Event Horizon Telescope (EHT) Collaboration, which is imaging for the first time the black-hole candidate at the center of our Milky Way, has a major research focus in Germany. A significant contribution to this experiment is part of “BlackHoleCam”, a German-Dutch experiment founded in 2014. The research group of Prof. Rezzolla at the Institute for Theoretical Physics at the Goethe University Frankfurt is part of the collaboration. BlackHoleCam is supported by the European Research Council via an ERC Synergy Grant of 14 Million Euros.

Due to the strong pull of gravity, not even light can escape from black holes, whose surface, i.e., the event horizon, cannot be observed directly. However, the boundary which separates photons that are trapped from those that can escape from the incredible gravitational pull is called the black-hole “shadow”, because it would appear as a shadow against a bright lit background.


Quelle: Uni Frankfurt

It is such a shadow that is the target of series of observations presently ongoing of Sgr A*, the name of the black-hole candidate in our Milky Way. During the observations, the researchers will analyze the radio emission emitted by Sgr A*, whose mass is 4.5 million times that of our Sun and whose shadow is about half of the size of the distance between the Sun and the Earth.

Despite being so massive, Sgr A* is also very far from us, at a 26,000 light years, making the angular size of the shadow extremely small. Measuring the emission from this surface is therefore equivalent to imaging an apple on the surface of the Moon. To accomplish this ambitious project several radio telescopes across the globe are connected and thus form a virtual telescope with a diameter comparable to the Earth. This technique is called Long Baseline Interferometry (VLBI).

The work of BlackHoleCam is lead by Prof. Luciano Rezzolla (ITP, Frankfurt), Prof. Michael Kramer (Max Planck Institute for Radio Astronomy, Bonn), and by Prof. Heino Falcke (Radboud-University Nijmegen, Netherlands); all of them are important contributors of the EHT collaboration.

In the current observations of Sgr A*, network of radiotelescopes from Europe, the United States of America, Middle- and South America, and the South Pole telescope are participating at the same time. During the observations, each telescope records the data on hard disks which are shipped after the end of the campaign to one of the high-performance computer centers in the US or to Bonn. In these centers the individual data of the telescopes are combined by supercomputers and an image can be reconstructed.

This shadow image can be regarded as the starting point for the theoretical research of Prof. Rezzolla's group. Besides predicting theoretically what type of image scientists is expected to observe, the group in Frankfurt is also working on determining whether it will be possible to establish if Einstein’s theory of general relativity is the correct theory of gravity.

There are several other theories of gravity besides the well-known one by Einstein and the observations of the black-hole shadow may help to identify the true one. Because of this, scientists in Frankfurt analyze the size and the geometry of the shadow and compare them to synthetic images generated on supercomputers which model accretion flows onto black holes..

These images are computed by solving the equations of relativistic magneto-hydrodynamics and tracing the orbit of photons around black holes in different theories of gravity using state-of-the art numerical tools developed in the group of Prof. Rezzolla. Comparing the synthetic shadow to the observed one may shed light on the existence of one of the most extreme predictions of Einstein’s theory of gravity: the existence of black holes.

However, as Prof. Rezzolla remarks, “These observations represent a major step forward in the international attempt of understanding the nature of the dark and compact object at the centre of our Galaxy. However, they are just the first step and it is likely that many more observations of increasing precision will be necessary for finally settling this fundamental issue."

Weitere Informationen:

Further Information: Prof. Luciano Rezzolla, Institut für Theoretische Physik, Fachbereich 13, Campus Riedberg, (069)-798-47871; rezzolla@th.physik.uni-frankfurt.de

Ulrike Jaspers | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-frankfurt.de
http://aktuelles.uni-frankfurt.de/forschung/event-horizon-teleskop-vermisst-schwarzes-loch/

More articles from Physics and Astronomy:

nachricht Kiel physicists discover new effect in the interaction of plasmas with solids
16.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Understanding insulators with conducting edges
16.01.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

The pace at which the world’s permafrost soils are warming

16.01.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>