Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even phenomenally dense neutron stars fall like a feather

05.07.2018

Einstein gets it right again

Einstein's understanding of gravity, as outlined in his general theory of relativity, predicts that all objects fall at the same rate, regardless of their mass or composition. This theory has passed test after test here on Earth, but does it still hold true for some of the most massive and dense objects in the known universe, an aspect of nature known as the Strong Equivalence Principle? An international team of astronomers has given this lingering question its most stringent test ever. Their findings, published in the journal Nature, show that Einstein's insights into gravity still hold sway, even in one of the most extreme scenarios the Universe can offer.


This is an artist impression of the triple star system PSR J0337+1715, which is located about 4,200 light-years from Earth. This system provides a natural laboratory to test fundamental theories of gravity.

Credit: NRAO/AUI/NSF; S. Dagnello

Take away all air, and a hammer and a feather will fall at the same rate - a concept explored by Galileo in the late 1500s and famously illustrated on the Moon by Apollo 15 astronaut David Scott.

Though a bedrock of Newtonian physics, it took Einstein's theory of gravity to express how and why this is so. To date, Einstein's equations have passed all tests, from careful laboratory studies to observations of planets in our solar system. But alternatives to Einstein's general theory of relativity predict that compact objects with extremely strong gravity, like neutron stars, fall a little differently than objects of lesser mass. That difference, these alternate theories predict, would be due to a compact object's so-called gravitational binding energy -- the gravitational energy that holds it together.

In 2011, the National Science Foundation's (NSF) Green Bank Telescope (GBT) discovered a natural laboratory to test this theory in extreme conditions: a triple star system called PSR J0337+1715, located about 4,200 light-years from Earth. This system contains a neutron star in a 1.6-day orbit with a white dwarf star, and the pair in a 327-day orbit with another white dwarf further away.

"This is a unique star system," said Ryan Lynch of the Green Bank Observatory in West Virginia, and coauthor on the paper. "We don't know of any others quite like it. That makes it a one-of-a-kind laboratory for putting Einstein's theories to the test."

Since its discovery, the triple system has been observed regularly by the GBT, the Westerbork Synthesis Radio Telescope in the Netherlands, and the NSF's Arecibo Observatory in Puerto Rico. The GBT has spent more than 400 hours observing this system, taking data and calculating how each object moves in relation to the other.

How were these telescopes able to study this system? This particular neutron star is actually a pulsar. Many pulsars rotate with a consistency that rivals some of the most precise atomic clocks on Earth. "As one of the most sensitive radio telescopes in the world, the GBT is primed to pick up these faint pulses of radio waves to study extreme physics," Lynch said. The neutron star in this system pulses (rotates) 366 times per second.

"We can account for every single pulse of the neutron star since we began our observations," said Anne Archibald of the University of Amsterdam and the Netherlands Institute for Radio Astronomy and principal author on the paper. "We can tell its location to within a few hundred meters. That is a really precise track of where the neutron star has been and where it is going."

If alternatives to Einstein's picture of gravity were correct, then the neutron star and the inner white dwarf would each fall differently toward the outer white dwarf. "The inner white dwarf is not as massive or compact as the neutron star, and thus has less gravitational binding energy," said Scott Ransom, an astronomer with the National Radio Astronomy Observatory in Charlottesville, Virginia, and co-author on the paper.

Through meticulous observations and careful calculations, the team was able to test the system's gravity using the pulses of the neutron star alone. They found that any acceleration difference between the neutron star and inner white dwarf is too small to detect.

"If there is a difference, it is no more than three parts in a million," said coauthor Nina Gusinskaia of the University of Amsterdam. This places severe constraints on any alternative theories to general relativity.

This result is ten times more precise that the previous best test of gravity, making the evidence for Einstein's Strong Equivalence Principle that much stronger. "We're always looking for better measurements in new places, so our quest to learn about new frontiers in our Universe is going to continue," concluded Ransom.

###

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

The Green Bank Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc.

Media Contact

Paul Vosteen
pvosteen@nrao.edu
304-456-2212

 @GBT

http://www.greenbankobservatory.org 

Paul Vosteen | EurekAlert!
Further information:
https://greenbankobservatory.org/dense-neutron-stars-fall-like-a-feather

Further reports about: Observatory astronomy dwarf neutron star neutron stars star system white dwarf

More articles from Physics and Astronomy:

nachricht Ultracold atoms and ultrafast lasers: Hamburg scientists combine experimental expertise
04.07.2018 | Universität Hamburg

nachricht Electron spectrometer deciphers quantum mechanical effects
04.07.2018 | Fraunhofer Institute for Applied Optics and Precision Engineering

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

Im Focus: Probing nobelium with laser light

Sizes and shapes of nuclei with more than 100 protons were so far experimentally inaccessible. Laser spectroscopy is an established technique in measuring fundamental properties of exotic atoms and their nuclei. For the first time, this technique was now extended to precisely measure the optical excitation of atomic levels in the atomic shell of three isotopes of the heavy element nobelium, which contain 102 protons in their nuclei and do not occur naturally. This was reported by an international team lead by scientists from GSI Helmholtzzentrum für Schwerionenforschung.

Nuclei of heavy elements can be produced at minute quantities of a few atoms per second in fusion reactions using powerful particle accelerators. The obtained...

Im Focus: Asymmetric plasmonic antennas deliver femtosecond pulses for fast optoelectronics

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner. The technology enables the development of new, powerful terahertz components.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in...

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Nanotechnology to fight cancer: From diagnosis to therapy

28.06.2018 | Event News

Biological Transformation: nature as a driver of innovations in engineering and manufacturing

28.06.2018 | Event News

 
Latest News

New plant with E-VITA electron seed dressing inaugurated

05.07.2018 | Physics and Astronomy

What does global climate have to do with erosion rates? Not so much, say scientists

05.07.2018 | Earth Sciences

Soil weathering: The puppet master of carbon cycling?

04.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>