Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European XFEL starts operation phase

04.07.2017

The world’s largest X-ray laser, the European XFEL, has now entered its operation phase. Over the past few weeks, engineers and scientists at European XFEL and DESY have been working to ensure that the experiment stations are equipped with instruments and that the X-ray beam meets the parameters needed to start doing experiments. On Friday, the European XFEL Council, the highest governing organ of European XFEL, agreed that the conditions for the start of operation have now been satisfied, and consequently released the funds designated for the operation phase.

The X-ray laser produces extremely bright and short X-ray flashes that, with the help of specialised experiment stations, allow scientists to gain completely new insights into the atomic details and processes of the nanoworld. First experiments are now possible and have started for commissioning purposes; user operation with scientific research is scheduled to begin in September.


Fresnel diffraction pattern at the European XFEL

This diffraction pattern, recorded at the SPB/SFX instrument at the European XFEL, is generated by shining the European XFEL laser light through an approximately millimetre-wide square gap. The evenly spaced, grid-like lines of the pattern show areas of interference resulting from diffraction through the gap, demonstrating that the light has very high quality laserlike properties.

Copyright European XFEL

Prof. Martin Meedom Nielsen, chairman of the European XFEL Council said: "The member states are very pleased and excited about the great achievements made at the European XFEL, which mean we can now start the operation phase of this world-leading X-ray science facility. This major milestone has been eagerly awaited by the international user community, who are busily preparing for experiments that will break new scientific ground. I would like to express my sincere appreciation to the European XFEL management and staff, and to the accelerator consortium led by DESY, for their dedication and hard work.”

“Since successfully producing the first laser light in May, DESY and European XFEL have continued to make significant progress. I am very pleased that we have met the requirements to start research at the X-ray laser,” said European XFEL Managing Director Prof. Robert Feidenhans’l.

In order to qualify for the transition from commissioning to operation phase, the facility had to meet a number of pre-determined technical requirements. These requirements state that the pulses of the X-ray laser at a wavelength of maximally two Ångströms (0.2 nanometres) reach a typically high intensity and remain stable. In addition, the two experiment stations of the first beamline should be sufficiently equipped so that first scientific experiments can be carried out.

Other developments since producing the first laser light in May, include producing short waved so-called hard X-rays, successfully guiding the X-ray beam via special mirrors into the experiment hutches, and commissioning a number of highly specialised instruments for characterizing the properties of the X-ray beam. Directly after the first X-ray beam was guided into the hutches on 23 June, teams at European XFEL started with the characterisation of the beam and experiments for the commissioning of the instruments.

With a wavelength of initially two Ångströms and the required peak light intensity, the X-ray light will allow the recording of atomic detail. At two experiment stations first experiments are now possible: At the instrument FXE (Femtosecond X-ray Experiments), that is designed for the research of extremely fast processes, and at the instrument SPB/SFX (Single Particles, Clusters, and Biomolecules / Serial Femtosecond Crystallography), designed for studying biomolecules and biological structures.

The official opening of the international facility will take place on 1 September and the first scientific users are expected within the weeks following that. Project proposals for the first round of beamtime have been evaluated by international committees of experts over the past few weeks. Successful submissions will be announced shortly.

“We look forward to welcoming the first external users to our research campus in Schenefeld very soon”, adds Feidenhans’l.

European XFEL will continue with completing the construction of two additional X-ray light producing systems (undulators), the associated beamlines into the experiment hall and four more experiment stations. At the same time the average intensity of the X-ray laser beam will be increased step-by-step up to the target pulse rate of 27,000 pulses per second, making the European XFEL unique worldwide.

About European XFEL

The European XFEL, currently being commissioned in the Hamburg area, is an international research facility of superlatives: 27,000 X-ray flashes per second and a brilliance that is a billion times higher than that of the best conventional X-ray sources will open up completely new opportunities for science. Research groups from around the world will be able to map the atomic details of viruses, decipher the molecular composition of cells, take three-dimensional “photos” of the nanoworld, “film” chemical reactions, and study processes such as those occurring deep inside planets. The construction and operation of the facility is entrusted to the European XFEL GmbH, a non-profit company that cooperates closely with the research centre DESY and other organisations worldwide. The company, which has a workforce of about 300 employees, expects to start user operation of the facility in the second half of 2017. With construction and commissioning costs of 1.22 billion euro (at 2005 price levels) and a total length of 3.4 kilometres, the European XFEL is one of the largest and most ambitious European research projects to date. At present, 11 countries have signed the European XFEL convention: Denmark, France, Germany, Hungary, Italy, Poland, Russia, Slovakia, Spain, Sweden, and Switzerland. The United Kingdom is in the process of joining.

Contact:
Bernd Ebeling
bernd.ebeling@xfel.eu
+49 40 89986921

Weitere Informationen:

https://media.xfel.eu/XFELmediabank/?l=en&c=16055 Pictures
http://www.xfel.eu European XFEL website

Dr. Bernd Ebeling | idw - Informationsdienst Wissenschaft

Further reports about: DESY X-ray X-ray beam X-ray light X-ray sources XFEL laser beam laser light nanoworld

More articles from Physics and Astronomy:

nachricht Fusion by strong lasers
06.12.2019 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht NASA's OSIRIS-REx mission explains Bennu's mysterious particle events
06.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>