European Satellites Probe a New Magnetar

The object, designated SGR 0501+4516, was the first of its type discovered in a decade and is only the fifth confirmed SGR. “Some sources are extremely active, but others can be quiet for a decade or more,” said Nanda Rea, University of Amsterdam, who led the study. “This suggests many members of this class remain unknown.”

Astronomers think the eruptions of SGRs arise from the most highly magnetized objects in the universe — magnetars. Magnetars are neutron stars — the crushed cores of exploded stars — that, for reasons not yet known, possess ultra-strong magnetic fields. With fields 100 trillion times stronger than Earth’s, a magnetar placed half the moon’s distance would wipe the magnetic strips of every credit card on the planet. “Magnetars allow us to study extreme matter conditions that cannot be reproduced on Earth,” said Kevin Hurley, a team member at the University of California, Berkeley.

Both SGRs and a related group of high-energy neutron stars — called anomalous X-ray pulsars — are thought to be magnetars. But, all told, astronomers know of only 15 examples.

SGR 0501+4516, estimated to lie about 15,000 light years away, was only discovered because its outburst gave it away. Astronomers think an unstable configuration of the star's magnetic field triggers the eruptions. “Once the magnetic field resumes a more stable configuration, the activity ceases and the star returns to quiet and dim emission,” Rea said.

Twelve hours after Swift pinpointed SGR 0501+4516, XMM-Newton began the most detailed study of a fading magnetar outburst ever attempted. The object underwent hundreds of small bursts over a period of more than four months. Only five days after the initial eruption, INTEGRAL detected X-rays from the object that were beyond the energy range XMM-Newton can see. It's the first time such transient high-energy X-ray emission has been detected during an SGR's outburst phase. This emission disappeared within ten days of the outburst. The findings were published online June 15 in the Monthly Notices of the Royal Astronomical Society.

The team plans further observations of SGR 0501+4516 with XMM-Newton. They hope to detect the object in a quiet state in order to probe the calm after the storm.

Media Contact

Francis Reddy EurekAlert!

More Information:

http://www.nasa.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors