Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA ground team in simulation training for GOCE launch

15.08.2008
The Mission Control Team at ESA's Space Operations Centre (ESOC) are now in intense training for the scheduled 10 September launch of GOCE, the Agency's Gravity field and steady-state Ocean Circulation Explorer.

GOCE is scheduled for lift-off at 16:21 CEST, 10 September 2008, from the Plesetsk Cosmodrome; the spacecraft arrived in Russia on 29 July on board an Antonov-124 cargo aircraft.

On 14 August, members of the Mission Control Team were on console in the Main Control Room at ESOC, Darmstadt, Germany, for a 12-hour simulation of the mission's countdown and launch phases; the simulation included practicing immediate reactions in case of any unexpected problems with the ground segment or the spacecraft.

GOCE team supported by experts throughout ESOC

The overall Mission Control Team is led by Flight Operations Director Pier Paolo Emanuelli and comprises a dedicated 13-person Flight Control Team, joined by an extended team of engineers from Ground Operations, Flight Dynamics, Software Support, Computers & Network Support, and ground stations.

Additional expertise is provided from ESOC in the areas of training, documentation and facilities management.

GOCE will orbit at an exceptionally low altitude

"The GOCE mission team are receiving excellent support from our colleagues at ESOC. GOCE is a challenging mission and will orbit at an exceptionally low altitude of just 268 km, so spacecraft control is very critical. The simulations campaign is close to the end and we are fully ready to support the launch in September," said Emanuelli.

To achieve its mission objectives - mapping Earth's gravity field in unprecedented detail - the slender, 5m-long satellite is designed to orbit at a low altitude because the gravitational variations are stronger closer to Earth.

The GOCE team will undergo intensive training, simulations and work-ups between now and the launch, with a strong focus on practicing for LEOP - the Launch and Early Orbit phase - the crucial first steps in GOCE's mission beginning after the satellite separates from the launcher's upper-most stage.

One highlight of today's training will be establishing and testing the voice and data communication links between ESOC in Germany and the Launch Control Centre at Plesetsk, Russia.

The GOCE team conducted previous simulations in July and August, and have spent the past months defining and confirming procedures and plans covering all possible nominal and contingency situations.

Flight control team engineers have also been working intently to ensure that the ground segment - the computers and software here at ESOC - is ready to support the mission.

A full launch and LEOP rehearsal will be conducted on 5 September, just five days prior to launch.

| alfa
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/GOCE/SEMF3MKRQJF_0.html

More articles from Physics and Astronomy:

nachricht Physicists from Hannover Predict Novel Light Molecules
26.02.2020 | Leibniz Universität Hannover

nachricht From China to the South Pole: Joining forces to solve the neutrino mass puzzle
25.02.2020 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>