Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Epiphany of Cosmic Proportions

11.12.2012
University of North Dakota scientist Mark Hoffmann’s version of Star Search goes a long way — a very long way — out into the universe.

Hoffmann, a computational chemist, and his colleagues Tryve Helgaker, a well-known Norwegian scientist, and co-authors E.I. Tellgren and K. Lange, also working in Norway, have discovered a molecular-level interaction that science had puzzled over for decades but had never seen.

That discovery, it turns out, may redefine how science views chemical compound formation. It also answers questions about what goes on in places like white dwarfs, the super dense cores of stars nearing the end of their life cycles.

“We discovered a new type of chemical bonding,” said Hoffmann, known globally for his pioneering work in the theory and computer modeling of chemical compound formation.

“That’s a pretty bold statement, but I’m not kidding you! It’s a brand new type of chemical bonding, not previously known to science.”

Hoffmann and his colleagues have rewritten the chemical rule book for assessing what happens in the night sky. It’s about answering timeless questions such as how stars form, evolve, and eventually die.

Their work also provides the secret for how some compounds form in the distant universe. This momentous discovery appears in an article in a recent issue of the internationally respected journal Science.

“Our discovery addresses one of the mysteries in astrophysics about the spectrum of white dwarf stars,” Hoffmann said. “White dwarfs have an unusual spectrum that has been thought to result from polymerized hydrogen and helium which, of course, do not occur on Earth.

“It’s possible out there because the magnetic fields on white dwarfs are several orders of magnitude larger than anything that can be generated on Earth.”

The closest white dwarf, Sirius B, is a faint twin to the brightest star in the night sky, Sirius A. It’s about the same size as our sun, but much denser; its average density is 1.7 metric tons per cubic centimeter, or about 3,000 pounds compressed into a box the size of a sugar cube.

Hoffmann and his team described a magnetically induced bonding process between materials.

“There was speculation that this phenomenon should exist, but no one had the proof, and no one — until the team I’m on described the process — had the theoretical structure and the computational tools to address this,” he said.

On Earth, even the boldest military experiments generate a peak of maybe 1,000 Tesla — a measure of magnetic force (refrigerator magnets generate a thousandth of one Tesla). But on Sirius B, for example, magnetic fields are on the order of 200,000 to 400,000 Tesla, enough to challenge the electronic interactions that dominate the chemistry and material science we know on Earth.

Such vast magnetic fields directly alter the way atoms come together, and can alter the chemical reality we know on Earth.

“What we had before we discovered this was basically a paper-and-pencil model of what goes on in the universe. Compared to what’s out there in places such as white dwarf stars, the magnetic fields we can generate here — even with the strongest magnets — are pathetic.”

So how did they do it?

“We computationally modeled the behavior that we theorized, based on universally applicable physical principles,” Hoffmann said.

The team’s computer model supported their theory. Now it’s up to astrophysicists to test the model by old-fashioned observation of the stars.

David Dodds | Newswise
Further information:
http://www.und.edu

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>