Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environment turns molecule into a switch

26.11.2018

For the first time, physicists from the University of Würzburg have successfully positioned an organic molecule on a substrate realizing two stable configurations. This may have application potential in molecular spintronics.

It looks like a cross with four arms of equal length that have a central atom at their intersection. All atoms are arranged in one plane so that the molecule is absolutely planar – at least in the normal state.


A flat molecule on a surface comprised of bismuth atoms (blue) and silver atoms (grey). The central manganese atom (red) is capable of changing its position.

Graphic: Jens Kügel & Michael Karolak

Physicists from the University of Würzburg have now succeeded in manipulating this molecule using a special deposit and an electrical field to permanently take on two different states.

This could make the molecule suitable as a kind of "molecular switch" for spintronics applications – a trailblazing data processing technology based on electron spin.

The molecular switch is the fruit of a collaboration of members from the Departments of Experimental and Theoretical Physics at the University of Würzburg: Dr. Jens Kügel, a postdoc at the Department of Experimental Physics II, devised and ran the experiments.

Giorgio Sangiovanni, a Professor of Theoretical Physics at the Institute of Theoretical Physics and Astrophysics, was in charge of interpreting them. The team has recently published their research results in the current issue of the journal npj Quantum Materials.

Building a bridge with a dye molecule

"We used a manganese phthalocyanine molecule, a dye which cannot be normally switched," Sangiovanni describes the physicists' approach. Jens Kügel had to resort to a trick to turn it into a molecular switch: He mounted the molecule on a very special metallic surface built of silver and bismuth atoms.

Because bismuth atoms are much bigger than silver atoms, their regular arrangement covers the metal surface like low walls. Irregularities in this structure result in a larger distance between two bismuth areas like a dried-up riverbed. The manganese phthalocyanine molecule then builds a bridge across this riverbed to continue the metaphor.

Switched by an electric field

Jens Kügel used a special technique to give the molecule its switching property. When he approached the manganese atom at the centre of the molecule with a very fine tip that emitted an electric field, the central atom changed its position and moved down a bit towards the metallic surface out of the molecular plane. "In this way, the molecule took on two stable switchable states," the physicist says.

Physically, the molecule creates a large magnetic moment due to the position change of its central atom. Because of special quantum physics phenomena, this change of position affects the entire molecule, manifesting externally through distinctly different magnetic properties. Physicists refer to this as the Kondo effect.

A new concept to build molecular switches

Normally, molecular switches are synthesised to be intrinsically stable in multiple states. "We have now demonstrated that this functionality can be created also in non-switchable molecules by selectively manipulating the molecule's environment," Kügel and Sangiovanni explain the central result of their paper.

The physicists have thus developed a new concept to build molecular switches which they believe will open up new design possibilities in molecular electronics in the future.

Successful cooperation in the Collaborative Research Center

The successful collaboration of theoretical and experimental physicists at the University of Würzburg is also based on the Collaborative Research Center "Topological and Correlated Electronics at Surfaces and Interfaces", short ToCoTronics, which is located in Würzburg. Its focus is on special physical phenomena – electronic correlations and topological physics, and above all, their interactions which have huge application potential for novel, trailblazing technologies of tomorrow.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Giorgio Sangiovanni, T: +49 931 31-89100, sangiovanni@physik.uni-wuerzburg.de
Dr. Jens Kügel, T: +49 931 31-85085, jens.kuegel@physik.uni-wuerzburg.de

Originalpublikation:

Reversible magnetic switching of high-spin molecules on a giant Rashba surface. Jens Kügel, Michael Karolak, Andreas Krönlein, David Serrate, Matthias Bode & Giorgio Sangiovanni. npj Quantum Materials, https://doi.org/10.1038/s41535-018-0126-z

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>