Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entangling photons from a quantum dot in the telecom C-band

28.09.2017

A research team of the institute of semiconductor optics and functional interfaces (IHFG) of the University of Stuttgart experimentally verified the generation of polarization-entangled photon pairs in the emission wavelength range of the telecom C-band. The generation of entangled photons, i.e. a non-classical phenomenon which “bounds” the states of two different entities, is a cornerstone for the realization of quantum networks.

Quantum dots are one of the most prominent and promising candidates as non-classical light sources applied in quantum information technology. They have been proven to be able to emit single, indistinguishable and also polarization-entangled photon pairs via the biexciton-exciton cascade.


Schematic representation of a quantum dot emitting polarization entangled photons. The entanglement is here pictorially represented by the transparent connection between the two photons.

Sascha Kolatschek, Universität Stuttgart / IHFG

All these properties have been demonstrated in the NIR regime (i.e. around 900 nm) and here, for the first time, the entangled photon emission was increased up to 1550 nm, key wavelength for fiber-based long-distance classical and quantum communication.

So far the best QD performances have been realized using InAs dots on GaAs platform (naturally emitting at NIR wavelength). This motivated the team of Prof. Dr. Peter Michler to push such a technology up to telecommunication wavelengths.

After long efforts, in close collaboration with the epitaxy team led by Dr. Michael Jetter, it was possible to reach such a milestone, i.e. utilizing In(Ga)As dots to emit telecom-wavelength photons.

The demonstrated entanglement generation in such a system foresees the possibility to extend the unique capabilities reached at NIR up to telecom wavelength. Emission in this regime represents a fundamental skill for fiber-based applications and additionally it is useful for satellite communication, since it marks an atmospheric transmission window.

After the verification of the single-photon nature of the harvested light, moreover an extraordinary low exciton fine-structure splitting (FSS) for most of the investigated quantum dots was measured: indeed, a large FSS inhibits the entanglement generation with high fidelity.

Motivated by this observation, a set of polarization-resolved cross-correlation experiments was performed on an exemplary dot in order to reconstruct the two-photon polarization state that finally reveals the degree of entanglement.

It was found that the detected photons are indeed entangled, which opens the path towards the application of quantum dots in long-distance communication and cryptography schemes. This work represents an important step forward towards the realization of long-distance quantum applications.

Weitere Informationen:

http://dx.doi.org/10.1063/1.4994145

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Physics and Astronomy:

nachricht Ph.D. student develops spinning heat shield for future spacecraft
10.08.2018 | University of Manchester

nachricht For UW physicists, the 2-D form of tungsten ditelluride is full of surprises
10.08.2018 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>