Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enroute to a quantum computer

21.05.2012
Volkswagen Foundation gives €550,000 support to material sciences project being conducted under the aegis of Johannes Gutenberg University Mainz

The Volkswagen Foundation is financing a materials science project being conducted jointly by the universities in Mainz and Osnabrück in collaboration with the Jülich Research Center. The support is to be provided over a period of three years and will total €550,000.

The project managers, Professor Dr. Angelika Kühnle and Dr. Wolfgang Harneit of the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU), were notified of the grant in March 2012. This project is a continuation of a recently completed earlier project that was also financed by the Volkswagen Foundation.

The overall objective of the projects is to demonstrate the technical feasibility of a quantum computer on the basis of electron spins. Quantum computers are theoretically capable of far more efficient calculations than those of today's silicon-based computers. However, the necessary materials that would make quantum computers suitable for everyday use have yet to be invented.

For its experiments, the project team working under Kühnle and Harneit is using special fullerenes, soccer ball-shaped carbon molecules with enclosed nitrogen atoms. The electron spin of this nitrogen atom serves as a qubit, the quantum equivalent of the classic silicon-based computer bit. To read these qubits, the scientists have to insert the fullerenes in diamond nitrogen-vacancy centers, i.e., point defects in the diamond lattice, which can be scanned optically. It was Wolfgang Harneit who originated the idea of using fullerenes as qubits and who set out the original concepts in 2002.

In the first project, the researchers confirmed that the results of quantum calculations using fullerenes could be read with the aid of nitrogen-vacancy centers in diamonds. However, as the fullerenes failed to configure appropriately in the diamonds, it was not possible to perform coherent calculations. In the second project, the researchers plan to attach the fullerenes to carbon nanotubes and then insert these in diamonds. The resulting configuration should then make it possible to perform intelligible complex quantum calculations.

"We are working on quantum computers that are scalable because we are at the limits of silicon technology," says Angelika Kühnle. "A quantum computer is a completely revolutionary type of computer and a successful implementation would have impressive capacity." The current project is entitled "Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centers in diamond." It will be sponsored through the Volkswagen Foundation's "Integration of Molecular Components in Functional Macroscopic Systems" program, just like its predecessor.

Angelika Kühnle's research makes her an important contributor to the Molecularly Controlled Non-Equilibrium (MCNE) Cluster of Excellence at JGU, which is currently competing in the final round of Germany's Federal Excellence Initiative.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15356.php
http://www.uni-mainz.de/FB/Chemie/Kuehnle/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>