Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enroute to a quantum computer

21.05.2012
Volkswagen Foundation gives €550,000 support to material sciences project being conducted under the aegis of Johannes Gutenberg University Mainz

The Volkswagen Foundation is financing a materials science project being conducted jointly by the universities in Mainz and Osnabrück in collaboration with the Jülich Research Center. The support is to be provided over a period of three years and will total €550,000.

The project managers, Professor Dr. Angelika Kühnle and Dr. Wolfgang Harneit of the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU), were notified of the grant in March 2012. This project is a continuation of a recently completed earlier project that was also financed by the Volkswagen Foundation.

The overall objective of the projects is to demonstrate the technical feasibility of a quantum computer on the basis of electron spins. Quantum computers are theoretically capable of far more efficient calculations than those of today's silicon-based computers. However, the necessary materials that would make quantum computers suitable for everyday use have yet to be invented.

For its experiments, the project team working under Kühnle and Harneit is using special fullerenes, soccer ball-shaped carbon molecules with enclosed nitrogen atoms. The electron spin of this nitrogen atom serves as a qubit, the quantum equivalent of the classic silicon-based computer bit. To read these qubits, the scientists have to insert the fullerenes in diamond nitrogen-vacancy centers, i.e., point defects in the diamond lattice, which can be scanned optically. It was Wolfgang Harneit who originated the idea of using fullerenes as qubits and who set out the original concepts in 2002.

In the first project, the researchers confirmed that the results of quantum calculations using fullerenes could be read with the aid of nitrogen-vacancy centers in diamonds. However, as the fullerenes failed to configure appropriately in the diamonds, it was not possible to perform coherent calculations. In the second project, the researchers plan to attach the fullerenes to carbon nanotubes and then insert these in diamonds. The resulting configuration should then make it possible to perform intelligible complex quantum calculations.

"We are working on quantum computers that are scalable because we are at the limits of silicon technology," says Angelika Kühnle. "A quantum computer is a completely revolutionary type of computer and a successful implementation would have impressive capacity." The current project is entitled "Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centers in diamond." It will be sponsored through the Volkswagen Foundation's "Integration of Molecular Components in Functional Macroscopic Systems" program, just like its predecessor.

Angelika Kühnle's research makes her an important contributor to the Molecularly Controlled Non-Equilibrium (MCNE) Cluster of Excellence at JGU, which is currently competing in the final round of Germany's Federal Excellence Initiative.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15356.php
http://www.uni-mainz.de/FB/Chemie/Kuehnle/

More articles from Physics and Astronomy:

nachricht New Boost for ToCoTronics
23.05.2019 | Julius-Maximilians-Universität Würzburg

nachricht The geometry of an electron determined for the first time
23.05.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>